2024-2025学年四川省绵阳市九年级数学第一学期开学综合测试试题【含答案】
展开
这是一份2024-2025学年四川省绵阳市九年级数学第一学期开学综合测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法中错误的是 ( )
A.一组对边平行且一组对角相等的四边形是平行四边形
B.对角线互相垂直的平行四边形是正方形
C.四个角相等的四边形是矩形
D.每组邻边都相等的四边形是菱形
2、(4分)若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
A.0B.2.5C.3 D.5
3、(4分)某社区超市以4元/瓶从厂家购进一批饮料,以6元/瓶销售.近期计划进行打折销售,若这批饮料的销售利润不低于20%则最多可以打( )
A.六折B.七折C.七五折D.八折
4、(4分)如图,点在反比例函数,的图像上,点在反比例函数的图像上, 轴于点.且,则的值为( )
A.-3B.-6C.2D.6
5、(4分)要使二次根式有意义,字母的取值范围是( )
A.x≥B.x≤C.x>D.x<
6、(4分)如图,直线l所表示的变量x,y之间的函数关系式为
A.B.C.D.
7、(4分)京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是
A.B.C.D.
8、(4分)已知E、F、G、H分别是菱形ABCD的边AB、BC、CD、AD的中点,则四边形EFGH的形状一定是( )
A.平行四边形B.矩形C.菱形D.正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,直线 与轴交于点 ,依次作正方形 、正方形 、……正方形 ,使得点、…, 在直线 上,点 在轴上,则点 的坐标是________
10、(4分)已知中,,则的度数是_______度.
11、(4分)如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
12、(4分)如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.
13、(4分)如图,菱形ABCD的周长是40 cm,对角线AC为10 cm,则菱形相邻两内角的度数分别为_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
15、(8分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).
(1)求AB的长;
(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).
①若M是PA的中点,求MH的长;
②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.
16、(8分)近几年杭州市推出了“微公交”,“微公交”是国内首创的纯电动汽车租赁服务.它作为一种绿色出行方式,对缓解交通堵塞和停车困难,改善城市大气环境,都可以起到积极作用.据了解某租赁点拥有“微公交”辆.据统计,当每辆车的年租金为千元时可全部租出;每辆车的年租金每增加千元,未租出的车将增加辆.
(1)当每辆车的年租金定为千元时,能租出多少辆?
(2)当每辆车的年租金增加多少千元时,租赁公司的年收益(不计车辆维护等其他费用)可达到千元?
17、(10分)求证:对角线相等的平行四边形是矩形.(要求:画出图形,写出已知和求证,并给予证明)
18、(10分)解方程:
(1)9x2=(x﹣1)2
(2)x2﹣2x﹣=0
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)二次三项式是完全平方式,则的值是__________.
20、(4分)样本-3、9、-2、4、1、5、的中位数是_____.
21、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
22、(4分)一次函数y=2x-1的图象在轴上的截距为______
23、(4分)已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为_________,频率为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形的边长为2, 边在轴上, 的中点与原点重合,过定点与动点的直线记作.
(1)若的解析式为,判断此时点是否在直线上,并说明理由;
(2)当直线与边有公共点时,求的取值范围.
25、(10分)如图,四边形 ABCD 是正方形,点 E是 BC边上任意一点, AEF 90°,且EF 交正方形外角的平分线 CF 于点 F.求证:AE=EF.
26、(12分)甲乙两位同学参加数学综合素质测试,各项成绩如下表:(单位:分)
(1)分别计算甲、乙同学成绩的中位数;
(2)如果数与代数,空间与图形,统计与概率,综合与实践的成绩按4:3:1:2计算,那么甲、乙同学的数学综合素质成绩分别为多少分?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
【详解】
A、一组对边平行的四边形是平行四边形,说法错误,有可能是梯形,应该是一组对边平行且相等的四边形是平行四边形;
B、对角线互相垂直且相等的平行四边形是正方形,此说法正确;
C、根据四边形的内角和为360°,可得四个内角都相等的四边形是矩形,故正确;
D、四条边都相等的四边形是菱形,说法正确.
故选A.
本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.
2、C
【解析】
解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
综上,可得:a=0、2.5或5,∴a不可能是1.
故选C.
本题考查中位数;算术平均数.
3、D
【解析】
设打x折后销售利润不低于20%,根据这批饮料的销售利润不低于20%列不等式求解即可.
【详解】
设打x折后销售利润不低于20%,根据题意得
6x-4≥4×20% ,
解得x≥0.8,
所以,最多可以打8折.
故选D.
此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.
4、B
【解析】
先根据反比例函数的比例系数k的几何意义,可知S△AOM,S△BOM=||,则S△AOM:S△BOM=3:|k|,再根据同底的两个三角形面积之比等于高之比,得出S△AOM:S△BOM=AM:MB=1:2,则3:|k|=1:2,然后根据反比例函数的图象所在的象限,即可确定k的值.
【详解】
∵点A在反比例函数y(x>0)的图象上,点B在反比例函数y(x>0)的图象上,AB⊥x轴于点M,∴S△AOM,S△BOM=||,∴S△AOM:S△BOM:||=3:|k|.
∵S△AOM:S△BOM=AM:MB=1:2,∴3:|k|=1:2,∴|k|=1.
∵反比例函数的图象在第四象限,∴k<0,∴k=﹣1.
故选B.
本题考查了反比例函数y的比例系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积,难度中等,得到3:|k|=1:2,是解题的关键.
5、B
【解析】
二次根式的被开方数应为非负数,列不等式求解.
【详解】
由题意得:1-2x≥0,
解得x≤,
故选B.
主要考查了二次根式的意义和性质.
概念:式子(a≥0)叫二次根式.
性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
6、B
【解析】
根据图象是直线可设一次函数关系式:,根据一次函数图象上已知两点代入函数关系式可得:,解得:,继而可求一次函数关系式.
【详解】
根据图象设一次函数关系式:,
由图象经过(0,0)和(1,2)可得:
,
解得:,
所以一次函数关系为:,
故选B.
本题主要考查待定系数法求一次函数关系式,解决本题的关键是要熟练掌握待定系数法.
7、A
【解析】
结合图形,根据平移的概念进行求解即可得.
【详解】
解:根据平移的定义可得图案可以通过A平移得到,
故选A.
本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.
8、B
【解析】
本题没有图,需要先画出图形,如图所示
连接AC、BD交于O,根据三角形的中位线定理推出EF∥BD∥HG,EH∥AC∥FG,得出四边形EFGH是平行四边形,根据菱形性质推出AC⊥BD,推出EF⊥EH,即可得出答案.
【详解】
解:四边形EFGH的形状为矩形,
理由如下:
连接AC、BD交于O,
∵E、F、G、H分别是AB、AD、CD、BC的中点,
∴EF∥BD,FG∥AC,HG∥BD,EH∥AC,
∴EF∥HG,EH∥FG,
∴四边形EFGH是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∵EF∥BD,EH∥AC,
∴EF⊥EH,
∴∠FEH=90°,
∴平行四边形EFGH是矩形,
故答案为:B.
本题考查了矩形的判定,菱形的性质,平行四边形的判定,平行线性质等知识点的运用,主要考查学生能否正确运用性质进行推理,题目比较典型,难度适中.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(22019-1,22018)
【解析】
先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n-1,2n-1),据此即可求解点B2019的坐标.
【详解】
解:∵令x=0,则y=1,
∴A1(0,1),
∴OA1=1.
∵四边形A1B1C1O是正方形,
∴A1B1=1,
∴B1(1,1).
∵当x=1时,y=1+1=2,
∴B2(3,2);
同理可得,B3(7,4);
∴B1的纵坐标是:1=20,B1的横坐标是:1=21-1,
∴B2的纵坐标是:2=21,B2的横坐标是:3=22-1,
∴B3的纵坐标是:4=22,B3的横坐标是:7=23-1,
∴Bn的纵坐标是:2n-1,横坐标是:2n-1,
则Bn(2n-1,2n-1),
∴点B2019的坐标是(22019-1,22018).
故答案为:(22019-1,22018).
本题考查一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题关键.
10、100
【解析】
根据平行四边形对角相等的性质,即可得解.
【详解】
∵中,,
∴
故答案为100.
此题主要考查平行四边形的性质,熟练掌握,即可解题.
11、50°
【解析】
由平行线的性质可求得∠C/CA的度数,然后由旋转的性质得到AC=AC/,然后依据三角形的性质可知∠AC/C的度数,依据三角形的内角和定理可求得∠CAC/的度数,从而得到∠BAB/的度数.
解:∵CC/∥AB,
∴∠C/CA=∠CAB=65°,
∵由旋转的性质可知:AC=AC/,
∴∠ACC/=∠AC/C=65°.
∴∠CAC/=180°-65°-65°=50°.
∴∠BAB/=50°.
12、9 .
【解析】
作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF= ,即可得出结论.
【详解】
解:作DE⊥AB于点E,DF⊥AC于点F,
∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
∴DE=DF,
又∵DE⊥AB于点E,DF⊥AC于点F,
∴∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF;
∵∠MDN+∠BAC=180°,
∴∠AMD+∠AND=180°,
又∵∠DNF+∠AND=180°
∴∠EMD=∠FND,
又∵∠DEM=∠DFN,DE=DF,
∴△DEM≌△DFN,
∴S△DEM=S△DFN,
∴S四边形AMDN=S四边形AEDF,
∵,AD平分∠BAC,
∴∠DAF=30°,
∴Rt△ADF中,DF=3,AF= =3 ,
∴S△ADF= AF×DF=×3×3= ,
∴S四边形AMDN=S四边形AEDF=2×S△ADF=9 .
故答案为9 .
本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.
13、60°,120°
【解析】
首先证明△ABD是等边三角形,则∠D=60°,然后利用菱形的性质求解.
【详解】
∵菱形ABCD的边长AD=CD==10cm,
又∵AC=10cm,
∴AD=CD=AC,
∴△ACD=60°,
∴∠D =60°,∠DAB=120°,
故答案为60°,120°
本题考查了菱形的性质,正确证明△ABC是等边三角形是关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)20分钟.
【解析】
(1)材料加热时,设y=ax+15(a≠0),
由题意得60=5a+15,
解得a=9,
则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
停止加热时,设y=(k≠0),
由题意得60=,
解得k=300,
则停止加热进行操作时y与x的函数关系式为y=(x≥5);
(2)把y=15代入y=,得x=20,
因此从开始加热到停止操作,共经历了20分钟.
答:从开始加热到停止操作,共经历了20分钟.
15、 (1)1;(2);.
【解析】
试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;
(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,
由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.
②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.
试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,
在Rt△ADP中,AD2+DP2=AP2,
即82+(x-4)2=x2,
解得:x=1,
即AB=1.
(2)①如图2,过点A作AG⊥PB于点G,
由(1)中的结论可得:PC=4,BC=8,∠C=90°,
∴PB=,
∵AP=AB,
∴PG=BG=PB=,
在Rt△AGP中,AG=,
∵AG⊥PB,MH⊥PB,
∴MH∥AG,
∵M是PA的中点,
∴H是PG的中点,
∴MH=AG=.
②当点M、N在移动过程中,线段FH的长度是不发生变化;
作MQ∥AN,交PB于点Q,如图3,
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,MH⊥PQ,
∴EQ=PQ.
∵MQ∥AN,
∴∠QMF=∠BNF,
在△MFQ和△NFB中,
,
∴△MFQ≌△NFB(AAS).
∴QF=QB,
∴HF=HQ+QF=PQ+QB=PB=.
∴当点M、N在移动过程中,线段FH的长度是不发生变化,长度为.
考点:四边形综合题.
16、(1)17;(2)每辆车的年租金增加千元时,年收益可达到千元.
【解析】
(1)1.5-9=1.5,由题意得,当租金为1.5千元时有3辆没有租出,然后计算即可;
(2)设每辆车的年租金增加x千元时,直接根据收益=176千元作为等量关系列方程求解即可.
【详解】
解:(1)(辆).
(2)设每辆车的年租金增加千元,
整理得,
(舍),.
即每辆车的年租金增加千元时,年收益可达到千元.
本题考查了一元二次方程的应用,审清题意,找出合适的等量关系是解答本题的关键.
17、见解析.
【解析】
分析:首先根据题意写出已知和求证,再根据全等三角形的判定与性质,可得∠ACD与∠BCD的关系,根据平行四边形的邻角互补,可得∠ACD的度数,根据矩形的判定,可得答案.
详解:已知:如图,在□ABCD中, AC=BD. 求证:□ABCD是矩形.
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=BC,
在△ADC和△BCD中,
∵,
∴△ADC≌△BCD,
∴∠ADC=∠BCD.
又∵AD∥CB,
∴∠ADC+∠BCD=180°,
∴∠ADC=∠BCD=90°.
∴平行四边形ABCD是矩形.
点睛:本题考查了矩形的判定,利用全等三角形的判定与性质得出∠ADC=∠BCD是解题关键.
18、(1),;(2),.
【解析】
(1)利用因式分解法即可解答
(2)先将分数化为整数,再利用判别式进行计算即可
【详解】
(1)
,
则,
故,
解得:,;
(2)
则,
△,
则,
解得:,.
此题考查解一元二次方程-因式分解法和判别式,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、17或-7
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
20、2.1.
【解析】
把给出的6个数据按从小到大(或从大到小)的顺序排列,处于中间的两个数的平均数就是此组数据的中位数.
【详解】
解:把数据按从小到大排列-3、-2、1、4、1、9共有6个数,
则这组数据的中位数为 =2.1,
所以这组数据的中位数为2.1.
故答案为:2.1.
本题考查中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.
21、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
22、-1
【解析】
根据截距的定义:一次函数y=kx+b中,b就是截距,解答即可.
【详解】
解:∵一次函数y=2x-1中b=-1,
∴图象在轴上的截距为-1.
故答案为:-1.
本题考查了一次函数图象上点的坐标特征.
23、8 0.4
【解析】
频数是指某个数据出现的次数,频率是频数与总数之比,据频数、频率的定义计算即可.
【详解】
解:在64.5~66.5这一小组中,65出现5次,66出现3次,出现数据的次数为5+3=8次,故其频数为8,,故其频率为0.4.
故答案为: (1). 8 (2). 0.4
本题考查了频数与频率,依据两者的定义即可解题.
二、解答题(本大题共3个小题,共30分)
24、(1)点在直线上,见解析;(2)的取值范围是.
【解析】
(1)把点A代入解析式,进而解答即可;
(2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.
【详解】
解:(1)此时点在直线上,
∵正方形的边长为2
∴
∵点为中点,
∴点,,
把点的横坐标代入解析式,得,等于点的纵坐标为2.
∴此时点在直线上.
(2)由题意可得,点及点,
当直线经过点时,设的解析式为()
∴解得
∴的解析式为.
当时,
又由,可得当时,
∴当直线与边有公共点时,的取值范围是.
本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.
25、见解析
【解析】
截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可.
【详解】
证明:在AB上截取BM=BE,连接ME,
∵∠B=90°,
∴∠BME=∠BEM=45°,
∴∠AME=135°
∵CF是正方形ABCD的外角的角平分线,
∴∠ECF=90°+∠DCF=90°+=135°=∠ECF,
∵AEF 90°
∴∠AEB+=90°
又∠AEB+=90°,
∴
∵AB=BC,BM=BE,
∴AM=EC,
在△AME和△ECF中
,
∴△AME≌△ECF(ASA),
∴AE=EF.
本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME≌△ECF.
26、(1)甲的中位数91.5,乙的中位数93;(2)甲的数学综合成绩92,乙的数学综合成绩91.1.
【解析】
(1)由中位数的定义求解可得;
(2)根据加权平均数的定义计算可得.
【详解】
(1)甲的中位数=,乙的中位数=;
(2)甲的数学综合成绩=93×0.4+93×0.3+19×0.1+90×0.2=92,
乙的数学综合成绩=94×0.4+92×0.3+94×0.1+16×0.2=91.1.
此题考查了中位数和加权平均数,用到的知识点是中位数和加权平均数,掌握它们的计算公式是本题的关键.
题号
一
二
三
四
五
总分
得分
数与代数
空间与图形
统计与概率
综合与实践
学生甲
93
93
89
90
学生乙
94
92
94
86
相关试卷
这是一份2024-2025学年四川省泸州市马溪中学数学九年级第一学期开学综合测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省甘孜县九年级数学第一学期开学综合测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年绵阳市重点中学九年级数学第一学期开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。