年终活动
搜索
    上传资料 赚现金

    四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】第1页
    四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】第2页
    四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】

    展开

    这是一份四川省绵阳市高中学阶段学校2024-2025学年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③ . 其中不正确的结论有( )
    A.0个B.1个C.2个D.3个
    2、(4分)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )
    A.(﹣26,50)B.(﹣25,50)
    C.(26,50)D.(25,50)
    3、(4分)如图,在平面直角坐标系中,□ 的顶点、、的坐标分别是,,,则顶点的坐标是( ).
    A.B.C.D.
    4、(4分)甲、乙、丙、丁四位同学在一次数学测验中的平均成绩是90分,而甲、乙、丙三人的平均成绩是88分,下列说法一定正确的是( )
    A.丁同学的成绩比其他三个同学的成绩都好
    B.四位同学成绩的中位数一定是其中一位同学的成绩
    C.四位同学成绩的众数一定是90分
    D.丁同学成绩是96分
    5、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
    A.16B.19C.22D.25
    6、(4分)若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是
    A.6cmB.5cmC.D.
    7、(4分)在平面直角坐标系中,点P(-3,4)关于y轴对称点的坐标为( )
    A.(-3,4) B.(3,4) C.(3,-4) D.(-3,-4)
    8、(4分)已知点,,都在直线上,则,,的大小关系是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若,,则阴影部分的面积为__________.
    10、(4分)为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
    11、(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=6,BD=8,若DE∥AC,CE∥BD,则OE的长为_____.
    12、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.
    13、(4分)一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,菱形的对角线相交于点,,,相交于点.求证:四边形是矩形.
    15、(8分)如图,在矩形ABCD中,点E在AD上,EC平分∠BED
    (1)判断△BEC的形状,并加以证明;
    (2)若∠ABE=45°,AB=2时,求BC的长.
    16、(8分)如图,在四边形中,,是的中点,,,于点.
    (1)求证:四边形是菱形;
    (2)若,,求的长.
    17、(10分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.
    18、(10分)按照下列要求画图并作答:
    如图,已知.
    画出BC边上的高线AD;
    画的对顶角,使点E在AD的延长线上,,点F在CD的延长线上,,连接EF,AF;
    猜想线段AF与EF的大小关系是:______;直线AC与EF的位置关系是: ______.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.
    20、(4分)菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为 cm.。
    21、(4分)如图 ,在中, ,,点、为 边上两点, 将、分别沿、折叠,、两点重合于点,若,则的长为__________.
    22、(4分)在直角坐标系中,点P(﹣2,3)到原点的距离是 .
    23、(4分)图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)计算:
    (2)解方程: (2 x 1)( x  3)  4
    25、(10分)已知y是x的函数,自变量x的取值范围是,下表是y与x的几组对应值.
    小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请将其补充完整:
    (1)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点.根据描出的点,画出该函数的图象.
    (2)根据画出的函数图象,写出:
    ①时,对应的函数值y约为 (结果精确到0.01);
    ②该函数的一条性质: .
    26、(12分)如图,方格纸中每个小方格都长为1个单位的正方形,已知学校位置坐标为A(1,2)。
    (1)请在图中建立适当的平面直角坐标系;
    (2)写出图书馆B位置的坐标。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.
    【详解】
    ∵BD是正方形ABCD的对角线,
    ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
    ∵BE=BC,
    ∴AB=BE,
    ∵BG⊥AE,
    ∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,
    在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
    ∵∠AGH=90°,
    ∴∠DAE=∠ABH=22.5°,
    在△ADE和△CDE中

    ∴△ADE≌△CDE,
    ∴∠DAE=∠DCE=22.5°,
    ∴∠ABH=∠DCF,
    在Rt△ABH和Rt△DCF中

    ∴Rt△ABH≌Rt△DCF,
    ∴AH=DF,∠CFD=∠AHB=67.5°,
    ∵∠CFD=∠EAF+∠AEF,
    ∴67.5°=22.5°+∠AEF,
    ∴∠AEF=45°,故①②正确;
    如图,连接HE,
    ∵BH是AE垂直平分线,
    ∴AG=EG,
    ∴S△AGH=S△HEG,
    ∵AH=HE,
    ∴∠AHG=∠EHG=67.5°,
    ∴∠DHE=45°,
    ∵∠ADE=45°,
    ∴∠DEH=90°,∠DHE=∠HDE=45°,
    ∴EH=ED,
    ∴△DEH是等腰直角三角形,
    ∵EF不垂直DH,
    ∴FH≠FD,
    ∴S△EFH≠S△EFD,
    ∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
    故选B.
    此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.
    2、C
    【解析】
    解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为,其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到的横坐标.
    【详解】
    解:经过观察可得:和的纵坐标均为,和的纵坐标均为,和的纵坐标均为,因此可以推知和的纵坐标均为;其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到:的横坐标为(是4的倍数).
    故点的横坐标为:,纵坐标为:,点第100次跳动至点的坐标为.
    故选:.
    本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.
    3、C
    【解析】
    由平行四边形的对边相等且互相平行可得AB=CD,CD∥AB,因为AB=5,点D的横坐标为2,所以点C的横坐标为7,根据点D的纵坐标和点C的纵坐标相同即可的解.
    【详解】
    ∵四边形ABCD为平行四边形,AB=5,
    ∴AB=CD=5,
    ∵点D的横坐标为2,
    ∴点C的横坐标为2+5=7,
    ∵AB∥CD,
    ∴点D和点C的纵坐标相等为3,
    ∴C点的坐标为(7,3).
    故选:C.
    本题考查平行四边形的性质以及坐标与图形的性质,解题的关键是熟知与x轴平行的点纵坐标都相等,将点向右移动几个单位横坐标就加几个单位.
    4、D
    【解析】
    根据算术平均数的定义,中位数的定义以及众数的定义对各选项分析判断利用排除法求解.
    【详解】
    .解:A、丁同学的成绩为90×4﹣88×3=96(分),而由甲、乙、丙三人的平均成绩是88分无法判断三人的具体成绩,无法比较,此选项错误;
    B、四位同学成绩的中位数可能是四个数据中的一个,也可能不在所列数据中,此选项错误;
    C、由于不清楚四位同学的各自成绩,所以不能判断众数,此选项错误;
    D、丁同学的成绩为90×4﹣88×3=96(分),此选项正确;
    故选D.
    本题考查了算术平均数的定义,中位数的定义,以及众数的定义,是基础题,熟记各概念是解题的关键.
    5、C
    【解析】
    首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴B′C=BC=AD,∠B′=∠B=∠D=90°
    ∵∠B′EC=∠DEA,
    在△AED和△CEB′中,

    ∴△AED≌△CEB′(AAS);
    ∴EA=EC,
    ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3,
    =22,
    故选:C.
    本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
    6、B
    【解析】
    ∵菱形的两条对角线分别为5cm和10cm,
    ∴菱形的面积为:(cm2),
    设正方形的边长为cm,则,解得:(cm).
    故选B.
    7、B
    【解析】试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
    解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
    故选B.
    8、C
    【解析】
    中,,所以y随x的增大而减小,依据三点的x值的大小即可确定y值的大小关系.
    【详解】
    解:
    y随x的增大而减小

    故答案为:C
    本题考查了一次函数的性质,正确理解并应用其性质是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、40
    【解析】
    作出辅助线,因为△ADF与△DEF同底等高,所以面积相等,所以阴影图形的面积可解.
    【详解】
    如图,连接EF
    ∵△ADF与△DEF同底等高,
    ∴S =S
    即S −S =S −S,
    即S =S =15cm,
    同理可得S =S =25cm,
    ∴阴影部分的面积为S +S =15+25=40cm.
    故答案为40.
    此题考查平行四边形的性质,解题关键在于进行等量代换.
    10、2.40,2.1.
    【解析】
    ∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
    ∴它们的中位数为2.40,众数为2.1.
    故答案为2.40,2.1.
    点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
    11、1
    【解析】
    根据菱形的性质得出AC⊥BD,由勾股定理可求AD=CD=1,再根据平行四边形的判定定理得四边形OCED为平行四边形,由矩形的判定定理得出四边形OCED是矩形,则该矩形的对角线相等,即CD=OE=1.
    【详解】
    证明:∵四边形ABCD为菱形,
    ∴AC⊥BD,OA=AC=3,OD=BD=4,
    ∴∠AOD=90°,
    ∴AD==1=CD
    ∵DE∥AC,CE∥BD
    ∴四边形OCED为平行四边形,
    又∵AC⊥BD
    ∴四边形OCED为矩形
    ∴CD=OE=1
    故答案为:1
    本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    12、1
    【解析】
    根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
    【详解】
    解:∵AM⊥BM,点D是AB的中点,
    ∴DM=AB=3,
    ∵ME=DM,
    ∴ME=1,
    ∴DE=DM+ME=4,
    ∵D是AB的中点,DE∥BC,
    ∴BC=2DE=1,
    故答案为:1.
    点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    13、小于
    【解析】
    先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.
    【详解】
    解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,
    ∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,
    ∴摸出白球可能性<摸出黄球的可能性;
    故答案为小于.
    本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.
    三、解答题(本大题共5个小题,共48分)
    14、见解析.
    【解析】
    首先判定四边形OAEB是平行四边形,再由菱形的性质得出∠AOB=90°,从而判定四边形OAEB是矩形.
    【详解】
    证明:∵,,
    ∴四边形是平行四边形,
    又∵四边形是菱形,
    ∴,
    ∴,
    ∴平行四边形是矩形.
    ∴四边形是矩形
    本题考查了矩形的判定,菱形的性质, 掌握矩形的判定和菱形的性质是解题的关键.
    15、(1)详见解析;(2)
    【解析】
    (1)根据矩形的性质和角平分线的性质可得∠BEC=∠BCE,可得BE=BC,则△BEC是等腰三角形;(2)根据勾股定理可求BE的长,即可求BC的长.
    【详解】
    解:(1)△BEC是等腰三角形,
    ∵在矩形ABCD中,AD∥BC,
    ∴∠DEC=∠BCE,
    ∵EC平分∠BED,
    ∴∠BEC=∠DEC,
    ∴∠BEC=∠BCE,
    ∴BE=BC,
    ∴△BEC是等腰三角形
    (2)在矩形ABCD中,∠A=90°,且∠ABE=45°,
    ∴△ABE是等腰直角三角形,
    ∴AE=AB=2,
    ∴BE=
    由(1)知BC=BE,
    ∴BC=
    本题考查了矩形的性质,等腰三角形的性质,勾股定理,熟练运用矩形的性质是本题的关键.
    16、(1)见解析;(2).
    【解析】
    (1)先证明四边形是平行四边形,再由直角三角形斜边的中线等于斜边的一半可得,从而可证四边形是菱形;
    (2)作,垂足为,根据勾股定理求出BC的长,再利用菱形的性质和三角形的面积公式解答即可.
    【详解】
    解:(1),,
    四边形是平行四边形,
    ,是的中点,

    是菱形;
    (2)作,垂足为,
    ,,,
    .

    .
    四边形是菱形,


    .
    此题考查菱形的判定和性质、直角三角形斜边的中线等于斜边的一半、勾股定理、平行四边形的判定,证明四边形AECD是菱形是解题的关键.
    17、CE=
    【解析】
    作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.
    【详解】
    如图,点E为所作;
    设CE=x,则EA=EB=1-x,
    在Rt△AEC中,∵AC2+CE2=AE2,
    ∴62+x2=(1-x)2,解得x=,
    即CE=.
    本题考查了作图,线段垂直平分线的性质,勾股定理,熟练掌握线段垂直平分线的性质以及勾股定理的内容是解题的关键.
    18、画图见解析;画图见解析;;.
    【解析】
    (1)直接利用钝角三角形高线的作法得出答案;
    (2)利用圆规与直尺截取得出E,F位置进而得出答案;
    (3)利用已知线段和角的度数利用全等三角形的判定与性质分析得出答案.
    【详解】
    如图所示:高线AD即为所求;
    如图所示:
    猜想线段AF与EF的大小关系是:;
    理由:在和中

    ≌,

    直线AC与EF的位置关系是:.
    理由:在和中

    ≌,


    故答案为;.
    本题考查了作图,三角形全等的判定与性质等,正确作出钝角三角形的高线是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    试题分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
    解:根据题意得:
    y=,
    整理得:;
    则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;
    故答案为y=.
    考点:分段函数.
    20、
    【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。
    21、3 或2
    【解析】
    过点A作AG⊥BC,垂足为G,由等腰三角形的性质可求得AG=BG=GC=2,设BD=x,则DF=x,EF=7-x,然后在Rt△DEF中依据勾股定理列出关于x的方程,从而可求得DG的值,然后依据勾股定理可求得AD的值.
    【详解】
    如图所示:过点A作AG⊥BC,垂足为G.
    ∵AB=AC=2 ,∠BAC=90°,
    ∴BC==1.
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=2.
    设BD=x,则EC=7-x.
    由翻折的性质可知:∠B=∠DFA=∠C=∠AFE=35°,DB=DF,EF=EC.
    ∴DF=x,EF=7-x.
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=3.
    当BD=3时,DG=3,AD=
    当BD=3时,DG=2,AD=
    ∴AD的长为3 或2
    故答案为:3 或2
    本题主要考查的是翻折的性质、勾股定理的应用、等腰直角三角形的性质,依据题意列出关于x的方程是解题的关键.
    22、.
    【解析】
    试题分析:在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,利用勾股定理求出OP的长,即为P到原点的距离.
    如图,过P作PE⊥x轴,连接OP,由P(﹣2,3),可得PE=3,OE=2,在Rt△OPE中,根据勾股定理得OP2=PE2+OE2,代入数据即可求得OP=,即点P在原点的距离为.
    考点:勾股定理;点的坐标.
    23、乙 乙槽中铁块的高度为14cm
    【解析】
    根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.
    【详解】
    ①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;
    ②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,
    故答案为乙,乙槽中铁块的高度为14cm.
    本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2),.
    【解析】
    (1)先化成最简二次根式,再合并其中的同类二次根式即可;
    (2)先化成一元二次方程的一般形式,再用公式法求解.
    【详解】
    解:(1)
    =
    =
    =.
    (2)原方程可变形为:
    由一元二次方程的求根公式,得:,
    ∴,.
    ∴原方程的解为:,.
    本题考查了二次根式的混合运算和一元二次方程的解法,解题的关键是熟知二次根式的混合运算法则和一元二次方程的求解方法.
    25、(1)见解析;(2)①-2.01(答案不唯一);②y随x的增大而增大(答案不唯一)
    【解析】
    (1)将各点顺次连线即可得到函数的图象;
    (2)①根据函数图象读取函数值即可;
    ②可从函数的增减性的角度回答.
    【详解】
    (1)如图,
    (2)根据函数图象得:
    ①当x=-2.5时,y的值约为-2.01(答案不唯一),
    故答案为:-2.01(答案不唯一);
    ②当x

    相关试卷

    四川省绵阳市部分学校2024-2025学年九上数学开学质量检测模拟试题【含答案】:

    这是一份四川省绵阳市部分学校2024-2025学年九上数学开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省绵阳市安州区2024-2025学年数学九上开学学业质量监测模拟试题【含答案】:

    这是一份四川省绵阳市安州区2024-2025学年数学九上开学学业质量监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省眉山市2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份四川省眉山市2024-2025学年九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map