2024-2025学年江苏省扬州市高邮市汪曾祺学校数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:
该店主决定本周进货时,增加了一些 尺码的衬衫,影响该店主决策的统计量是( )
A.众数B.方差C.平均数D.中位数
2、(4分)如图,点D、E、F分别为∠ABC三边的中点,若△DEF的周长为10,则△ABC的周长为( )
A.5B.10C.20D.40
3、(4分)已知一次函数y=(1﹣a)x+1,如果y随自变量x的增大而增大,那么a的取值范围为( )
A.a<1B.a>1C.a<﹣1D.a>﹣1.
4、(4分)矩形的对角线长为10,两邻边之比为3:4,则矩形的面积为( )
A.12B.24C.48D.50
5、(4分)如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为( )
A.2B.4C.6D.8
6、(4分)已知,则有( )
A.B.C.D.
7、(4分)下列是最简二次根式的是
A.B.C.D.
8、(4分)如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是( )
A.80B.60C.40D.20
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
10、(4分)若数使关于的不等式组,有且仅有三个整数解,则的取值范围是______.
11、(4分)如图,点O是矩形ABCD的对角线AC的中点,M是AD的中点,若OM=3,BC=8,则OB的长为 ________。
12、(4分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为_____.
13、(4分)如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m,高为16cm,现将一根长度为28cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)△ABC 在平面直角坐标系 xOy 中的位置如图所示.
(1)作△ABC 关于点 O 成中心对称的△A1B1C1;
(2)作出将△A1B1C1向右平移 3 个单位,再向上平移4 个单位后的△A2B2C2;
(3)请直接写出点 B2 关于 x 轴对称的点的坐标.
15、(8分)解方程:
(1);
(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
16、(8分)如图,在平面直角坐标系中,以原点为位似中心,将放大到原来的倍后得到,其中、在图中格点上,点、的对应点分别为、。
(1)在第一象限内画出;
(2)若的面积为3.5,求的面积。
17、(10分)如图,△ABC中,AB=BC=5cm,AC=6cm,点P从顶点B出发,沿B→C→A以每秒1cm的速度匀速运动到A点,设运动时间为x秒,BP长度为ycm.某学习小组对函数y随自变量x的变化而变化的规律进行了探究.下面是他们的探究过程,请补充完整:
(1)通过取点,画图,测量,得到了x(秒)与y(cm)的几组对应值:
要求:补全表格中相关数值(保留一位小数);
(2)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当x约为______时,BP=CP.
18、(10分) (1)解不等式;并把解集表示在数轴上
(2)解方程:
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下面是某校八年级(1)班一组女生的体重(单位:kg)36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.
20、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.
21、(4分)如果多项式是一个完全平方式,那么k的值为______.
22、(4分)若在实数范围内有意义,则x的取值范围是______.
23、(4分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED=cm,则平行四边形ABCD的周长是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,▱ABCD中,∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,点P的速度为每秒1cm,点Q的速度为每秒0.8cm,设运动时间为t秒,若当以A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
25、(10分)解下列方程
(1)3x2-9x=0
(2)4x2-3x-1=0
26、(12分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.
(1)抽样的人数是________人,补全频数分布直方图,扇形中________;
(2)本次调查数据的中位数落在________组;
(3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,
故影响该店主决策的统计量是众数.
故选:A.
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.掌握以上知识是解题的关键.
2、C
【解析】
由已知,点D、E、F分别为∠ABC三边的中点,根据三角形中位线定理,得AB、BC、AC分别是FE、DF、DE的两倍.因此,由△DEF的周长为10,得△ABC的周长为1.故选C.
3、A
【解析】
根据题意一次函数y随自变量x的增大而增大,即可得出1﹣a>0,从而求得a的取值范围.
【详解】
∵一次函数y=(1﹣a)x+1,函数值y随自变量x的增大而增大
∴1﹣a>0
解得a<1
故选A.
本题考查了一次函数图像增减性问题,解决此类问题只要牢固掌握一次函数k>0,函数图像递增,k<0函数图像递减,反过来亦适用.
4、C
【解析】
设矩形的两邻边长分别为3x、4x,根据勾股定理可得(3x)2+(4x)2=102,解方程求得x的值,即可求得矩形两邻边的长,根据矩形的面积公式即可求得矩形的面积.
【详解】
∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为10,
∴(3x)2+(4x)2=102,
解得:x=2,
∴矩形的两邻边长分别为:6,8;
∴矩形的面积为:6×8=1.
故选:C.
本题考查了矩形的性质及勾股定理,利用勾股定理求得矩形两邻边的长是解决问题的关键.
5、D
【解析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.
【详解】
解:∵正方形ABCD,AD=4,
∴AB=AD=4=BC,
∵BC=2OB,
∴OB=2,
∴A(2,4),代入y=得:k=8,
故选:D.
本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.
6、A
【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.
【详解】
m=(-)×(-2),
=,
=×3=2
=,
∵,
∴5<<6,
即5<m<6,
故选A.
本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
<6,题目比较好,难度不大.
7、B
【解析】
根据最简二次根式的定义即可判断.
【详解】
A. =2,故不是最简二次根式;
B. 是最简二次根式;
C. 根式含有分数,不是最简二次根式;
D. 有可以开方的m2,不是最简二次根式.
故选B.
此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.
8、C
【解析】
根据直角三角形斜边上中线的性质求出,根据三角形的面积公式求出即可.
【详解】
解:在中,是斜边上的中线,,
,
,
的面积,
故选:.
本题考查了直角三角形斜边上中线的性质和三角形的面积,能根据直角三角形斜边上中线的性质求出的长是解此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、18
【解析】
是 的中位线, .
, .
由勾股定理得
.
是 的中线, .
∴△CEF的周长为6.5+6.5+5=18
10、
【解析】
先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m的范围.
【详解】
解:解不等式组 得:
由有且仅有三个整数解即:3,2,1.
则:
解得:
本题考查了一元一次不等式组,利用不等式的解得出关于m的不等式组是解题关键.
11、5
【解析】
根据矩形的性质求出∠D=90°,OA=OB,AD=BC=8,求出AM,根据勾股定理求出OA即可.
【详解】
∵四边形ABCD为矩形,点M为AD的中点
∴点O为AC的中点,BC=AD=8,AC=BD
∴MO为三角形ACD的中位线
∴MO=CD,即CD=6
∴在直角三角形ACD中,由勾股定理得,AC==10。
∴OB=BD=AC=5.
本题考查了矩形的性质、勾股定理、三角形的中位线等知识点,能熟记矩形的性质是解此题的关键,注意:矩形的对边相等,矩形的对角线互相平分且相等,矩形的每个角都是直角.
12、1
【解析】
分析:由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S四边形AFBD=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所以S四边形AFBD=S△ABC,从而求出答案.
详解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF与△DEC中,
∴△AEF≌△DEC(AAS).
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四边形AFBD是平行四边形,
∴S四边形AFBD=2S△ABD,
又∵BD=DC,
∴S△ABC=2S△ABD,
∴S四边形AFBD=S△ABC,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=AB•AC=×4×6=1,
∴S四边形AFBD=1.
故答案为1
点睛:本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.
13、8
【解析】
先根据勾股定理求出玻璃棒在容器里面的长度的最大值,再根据线段的和差关系即可求解.
【详解】
(),
由勾股定理得(),
则玻璃棒露在容器外的长度的最小值是().
故答案为.
考查了勾股定理的应用,关键是运用勾股定理求得玻璃棒在容器里面的长度的最大值,此题比较常见,难度适中.
三、解答题(本大题共5个小题,共48分)
14、作图见解析.
【解析】
分析:(1)分别作出点A、B、C关于原点的对称点,顺次连接,即可得出图象;
(2)根据△A1B1C1将向右平移 3 个单位,再向上平移4 个单位后,得出△A2B2C2;
(3)直接写出答案即可.
详解:(1)如图所示,△A1B1C1 即为所求.
(2)如图所示,△A2B2C2即为所求.
(3)点 B2 关于 x 轴对称的点的坐标为(4,﹣3).
点睛:本题考查的是作图-旋转变换和平移变换,熟知图形旋转的性质和平移的性质是解答此题的关键.
15、(1),;(2)甲公司有1名员工,乙公司有25名员工.
【解析】
(1)直接用配方法解一元二次方程即可;
(2)设乙公司有x人,则甲公司有1.2x人,根据人均捐款钱数=捐款总钱数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:(1),
,;
(2)解:设乙公司有x人,则甲公司有1.2x人,
依题意,得:,
解得:x=25,
经检验,x=25是原分式方程的解,且符合题意,
∴1.2x=1.
答:甲公司有1名员工,乙公司有25名员工.
本题考查了解一元二次方程和分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
16、(1)详见解析;(2)14.
【解析】
试题分析:(1)直接利用位似图形的性质得出对应点位置进而得出答案;
(2)根据相似三角形的性质可求.
试题解析:(1)如图所示;
(2)∵ 将放大到原来的倍后得到
∴=1:4
∴=4×3.5 =14.
17、(1)见解析,5.0;4.1;(2)见解析;(3)2.5或9.1
【解析】
(1)根据点P在第5秒与第9秒的位置,分别求出BP的长,即可得到答案;
(2)根据表格中的x,y的对应值,描点、连线,画出函数图象,即可;
(3)令CP=y′,确定P在BC和AC上时,得y′=-x+5 或y′=x-5,画出图象,得到图象的交点的横坐标,即可求解.
【详解】
(1)当x=5时,点P与点C重合,y=5,
当x=9时,点P在AC边上,且CP=9×1-5=4cm,
过点B作BD⊥AC于点D,则CD=AC=3cm,BD=cm,
∴DP=CP-CD=4-3=1cm,BP=cm,即:y=4.1.
如下表:
故答案为:5.0;4.1;
(2)描点、连线,画出函数图象如下:
(3)令CP=y′,
当0≤x≤5时, y′=-x+5;
当5<x≤11时,y′=x-5,
画出图象可得:当x=2.5或9.1时,BP=PC.
故答案为:2.5或9.1.
本题主要考查动点问题的函数图象,理解图表的信息,掌握描点、连线,画出函数图象,理解当BP=CP时,x的值是函数图象的交点的横坐标,是解题的关键.
18、(1);(2)
【解析】
(1)根据解一元一次不等式的步骤,先去分母,再去括号,移项合并,系数化为1即可;
(2) 通过去分母将分式方程化成整式方程,解出整式方程的根,检验根是否是原分式方程的根即可.
【详解】
解: (1)去分母,得
去括号,得.
移项,得
合并同类项,得.
系数化为1,得
在数轴上表示如下,
(2)解: 去分母,得
解得
经检验,是原方程的根.
本题考查了不等式的解法及分式方程的解法,解分式方程的基本思想是消元,注意解分式方程时一定要检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分别利用平均数、众数及中位数的定义求解后即可得出答案.
【详解】
解:将数据重新排列为33、35、36、40、42、42、45,
所以这组数据的平均数为,
众数为、中位数为,
故答案为:、、.
此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.
20、y=2x+1
【解析】
试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.
解:由图象可知,点(0,0)、(2,4)在直线OA上,
∴向上平移1个单位得到的点是(0,1)(2,5),
那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,
则b=1,2k+b=5
解得:k=2.
∴y=2x+1.
故答案为:y=2x+1.
点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.
21、8或-4
【解析】
根据完全平方公式的定义即可求解.
【详解】
=为完全平方公式,故=±6,
即得k=8或-4.
此题主要考查完全平方公式的形式,解题的关键是熟知完全平方公式.
22、x≥-2
【解析】
分析:根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可.
详解:∵x+2≥0
∴x≥-2.
故答案为x≥-2.
点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.
23、15cm
【解析】
分析:由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE=3,即可求出AD的长,就能求出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=3cm,AD=BC,AD∥BC,∴∠AEB=∠EBC, ∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+=4.5,∴AD=BC=4.5,∴平行四边形的周长是2(AB+BC)=2(3+4.5)=15(cm).
故答案为:15cm.
点睛:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)AF=5;(3)以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.
【解析】
(1)先证明四边形为平行四边形,再根据对角线互相垂直平分的四边形是菱形作出判定;
(2)根据勾股定理即可求的长;
(3)分情况讨论可知,点在上,点在上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
【详解】
解:(1)四边形是矩形,
,
,.
垂直平分,
.
在和中,
,
,
.
,
四边形是平行四边形,
,
四边形为菱形.
(2)设菱形的边长,则,
在中,,由勾股定理,得
,
解得:,
.
(3)由作图可以知道,点上时,点上,此时,,,四点不可能构成平行四边形;
同理点上时,点或上,也不能构成平行四边形.
只有当点在上,点在上时,才能构成平行四边形,
以,,,四点为顶点的四边形是平行四边形时,
,
点的速度为每秒,点的速度为每秒,运动时间为秒,
,,
,
解得:.
以,,,四点为顶点的四边形是平行四边形时,秒.
此题是四边形综合题,主要考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.
25、(1)x1=0,x2=3;(2)x1=1,x2=-.
【解析】
(1)直接利用提取公因式法分解因式进而解方程得出答案;
(2)直接利用十字相乘法分解因式解方程得出答案.
【详解】
(1)3x2-9x=0,
3x(x-3)=0,
解得:x1=0,x2=3;
(2)4x2-3x-1=0,
(4x+1)(x-1)=0,
解得:x1=1,x2=-.
本题考查了利用因式分解法解一元二次方程,正确掌握因式分解的方法是解题的关键.
26、(1)60,见解析,84;(2)C;(3)1500人
【解析】
(1)用A类人数除以它所占的百分比得到调查的总人数;用总人数减去A、B、C、E组的人数即可得到D组人数,可以补全直方图;然后用B类人数除以调查的总人数×360°即可得到m的值;
(2)根据总人数确定中位数是第几个数据,再从直方图中找出这个数据落在哪一组;
(3)先算出抽样调查中“一分钟跳绳”成绩大于等于120次的人数,除以调查的总人数再乘以2250即可得到答案
【详解】
解:(1)6÷10%=60,所以抽样人数为60人;
60-(6+14+19+5)=16人,所以补全直方图如下:
扇形统计图中B所对应的圆心角为14÷60×360°=84°,所以84;
故答案为:60,见解析,84
(2)∵调查总人数为60
∴中位数应该是第30和第31个数据的平均数
由图可知第30、31个数据都落在C组,所以中位数落在C组
故答案为C
(3)由图知:“一分钟跳绳”成绩大于等于120次的调查人数为19+16+5=40人
∴人
所以该校2250名学生中“1分钟跳绳”成绩为优秀的大约有1500人
故答案为1500.
本题考查了条形统计图与扇形统计图,样本估计总体以及中位数等,注意计算要认真.
题号
一
二
三
四
五
总分
得分
尺码
39
40
41
42
43
平均每天销售数量(件)
10
12
20
12
12
x
0
1
2
3
4
5
6
7
8
9
10
11
y
0.0
1.0
2.0
3.0
4.0
4.5
4.1
4
4.5
5.0
x
0
1
2
3
4
5
6
7
8
9
10
11
y
0.0
1.0
2.0
3.0
4.0
5.0
4.5
4.1
4.0
4.1
4.5
5.0
2024-2025学年江苏省扬州市部分学校数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年江苏省扬州市部分学校数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】: 这是一份2024-2025学年菏泽市九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省扬州市高邮市汪曾祺学校数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年江苏省扬州市高邮市汪曾祺学校数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了方程的根是等内容,欢迎下载使用。