|试卷下载
搜索
    上传资料 赚现金
    2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】
    立即下载
    加入资料篮
    2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】01
    2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】02
    2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】

    展开
    这是一份2024-2025学年江苏省海安县白甸镇初级中学九上数学开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
    A.5B.10C.12D.13
    2、(4分)用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )
    A.甲正确,乙不正确B.甲不正确,乙正确
    C.甲、乙都正确D.甲、乙都不正确
    3、(4分)已知反比例函数,当时,自变量x的取值范围是
    A.B.C.D.或
    4、(4分)要使分式有意义,则x应满足( )
    A.x≠﹣1B.x≠2C.x≠±1D.x≠﹣1且x≠2
    5、(4分)某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是( )
    A.B.
    C.D.
    6、(4分)已知直线y1=2x与直线y2=﹣2x+4相交于点A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2;④直线y1=2x与直线y2=2x﹣4在平面直角坐标系中的位置关系是平行.其中正确的是( )
    A.①③④B.②③C.①②③④D.①②③
    7、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是
    A.
    B.
    C.
    D.
    8、(4分)如图,将▱ABCD沿对角线AC进行折叠,折叠后点D落在点F处,AF交BC于点E,有下列结论:①△ABF≌△CFB;②AE=CE;③BF∥AC;④BE=CE,其中正确结论的个数是( )
    A.1B.2C.3D.4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分) “我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=0.5千米,则该沙田的面积为________________平方千米.
    10、(4分)当时,分式的值是________.
    11、(4分)如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.
    12、(4分)已知关于的方程会产生增根,则__________.
    13、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在“国学经典”主题比赛活动中,甲、乙、丙三位同学的三项比赛成绩如下表(单位:分).
    (1)若“国学知识”、“现场写作”“经典诵读”分别按30%,20%,50%的比例计入该同学的比赛得分,请分别计算甲、乙两位同学的得分;
    (2)若甲同学的得分是80分,乙同学的得分是84分,则丙同学的得分是______分.
    15、(8分)如图,正比例函数y1=kx与-次函数y2=mx+n的图象交于点A(3,4),一次函数y2的图象与x轴,y轴分别交于点B,点C,且0A=OC.
    (1)求这两个函数的解析式;
    (2)求直线AB与两坐标轴所围成的三角形的面积.
    16、(8分)一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.
    (1)货车去B地的速度是 ,卸货用了 小时,返回的速度是 ;
    (2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;
    (3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.
    17、(10分)如图,AD是△ABC边BC上的高,用尺规在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹)
    18、(10分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
    所示:
    (1)根据图像,直接写出y1、y2关于x的函数关系式;
    (2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
    (3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
    20、(4分)直线与坐标轴围成的图形的面积为________.
    21、(4分)己知三角形三边长分别为,,,则此三角形的最大边上的高等于_____________.
    22、(4分)若二次根式有意义,则x的取值范围是 ▲ .
    23、(4分)已知四边形是矩形,点是边的中点,以直线为对称轴将翻折至,联结,那么图中与相等的角的个数为_____________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.
    (1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;
    (2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?
    (3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)
    25、(10分)有一工程需在规定日期x天内完成,如果甲单独工作刚好能够按期完成:如果乙单独工作就要超过规定日期3天.
    (1)甲的工作效率为 ,乙的工作效率为 .(用含x的代数式表示)
    (2)若甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求x的值.
    26、(12分)解下列方程:
    (1); (2).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可
    【详解】
    解:∵ED垂直平分AB,
    ∴BE=AE,
    ∵AC=12,EC=5,且△ACE的周长为30,
    ∴12+5+AE=30,
    ∴AE=13,
    ∴BE=AE=13,
    故选:D.
    本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.
    2、C
    【解析】
    根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.
    【详解】
    如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;
    图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.
    故选C.
    此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.
    3、D
    【解析】
    根据函数解析式中的系数推知函数图象经过第一、三象限,结合函数图象求得当时自变量的取值范围.
    【详解】
    解:反比例函数的大致图象如图所示,
    当时自变量的取值范围是或.
    故选:.
    考查了反比例函数的性质,解题时,要注意自变量的取值范围有两部分组成.
    4、D
    【解析】
    试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.
    考点:分式有意义的条件.
    5、A
    【解析】
    设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.
    【详解】
    解:设每人每小时的绿化面积为x平方米,
    由题意得,
    故选:A.
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    6、C
    【解析】
    ∵将A(1,2)代入y1和y2中可得左边=右边,
    ∴①是正确的;
    ∵当x=1时,y1=2,y2=2,故两个函数值相等,
    ∴②是正确的;
    ∵x<1,
    ∴2x<2,-2x+4>2,
    ∴y1<y2,
    ∴③是正确的;
    ∵直线y2=2x-4可由直线y1=2x向下平移4个单位长度可得,
    ∴直线y1=2x与直线y2=2x-4的位置关系是平行,
    ∴④是正确的;
    故选C.
    7、D
    【解析】
    根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.
    【详解】
    根据矩形性质, ,,只有D说法不正确的.
    故选D
    本题考核知识点:矩形性质. 解题关键点:熟记矩形性质.
    8、C
    【解析】
    根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.
    【详解】
    解:由折叠可得,AD=AF,DC=FC,
    又∵平行四边形ABCD中,AD=BC,AB=CD,
    ∴AF=BC,AB=CF,
    在△ABF和△CFB中,
    ∴△ABF≌△CFB(SSS),故①正确;
    ∴∠EBF=∠EFB,
    ∴BE=FE,
    ∴BC﹣BE=FA﹣FE,即EC=EA,故②正确;
    ∴∠EAC=∠ECA,
    又∵∠AEC=∠BEF,
    ∴∠EBF=∠EFB=∠EAC=∠ECA,
    ∴BF∥AC,故③正确;
    ∵E不一定是BC的中点,
    ∴BE=CE不一定成立,故④错误;
    故选:C.
    本题考查的是全等三角形的性质和平行四边形的性质,熟练掌握二者是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、7.1
    【解析】
    直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.
    【详解】
    解:∵12+122=132,
    ∴三条边长分别为1里,12里,13里,构成了直角三角形,
    ∴这块沙田面积为:×1×100×12×100=7100000(平方米)=7.1(平方千米).
    故答案为:7.1.
    此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.
    10、2021
    【解析】
    先根据平方差公式对分式进行化简,再将 代入即可得到答案.
    【详解】
    ==(a+2),将代入得原式=2019+2=2021.
    本题考察平方差公式和分式的化简,解题的关键是掌握平方差公式和分式的化简.
    11、
    【解析】
    先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.
    【详解】
    ∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,
    ∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为,
    故答案为.
    本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    12、4
    【解析】
    增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.
    【详解】
    方程两边都乘(x−2),得
    2x−m=3(x−2),
    ∵原方程有增根,
    ∴最简公分母x−2=0,即增根为x=2,
    把x=2代入整式方程,得m=4.
    故答案为:4.
    此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.
    13、1
    【解析】
    试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
    解:∵四边形ABCD是平行四边形,AC=12,
    ∴OA=AC=6,BD=2OB,
    ∵AB⊥AC,AB=8,
    ∴OB===10,
    ∴BD=2OB=1.
    故答案为:1.
    三、解答题(本大题共5个小题,共48分)
    14、(1)甲:84.8分;乙:1.8分;(2)1.
    【解析】
    (1)根据加权平均数的定义即可求解;
    (2)根据甲乙的分数求出写作的分值占比,再求出丙的分数即可.
    【详解】
    解:(1)甲:(分);
    乙:(分).
    答:甲、乙两位同学的得分分别是84.8、1.8分.
    (2)∵甲得分80分,乙得分84分,
    ∴乙比甲多得4分,
    ∴现场写作的占比为,丙的现场写作比乙多5分,
    ∴丙的得分为(分).
    故答案为:1.
    此题主要考查加权平均数的求解与应用,解题的关键是熟知加权平均数的定义.
    15、 (1) ,;(2) .
    【解析】
    (1)根据待定系数法确定正比例函数和一次函数的解析式即可;
    (2)利用三角形面积公式计算解答即可.
    【详解】
    (1)把A(3,4)代人中.得:3k=4


    过点A作AE⊥x轴,垂足为E.
    ∵A(3,4)
    ∴OE=3,AE=4
    在Rt△OAE中,
    又∵OC=OA=5
    ∴.C(0,-5)
    把A(3,4),C(0,-5)代人中,得


    (2)在中,令得
    ∴OB=
    ∴.
    考查的是一次函数的问题,关键是根据待定系数法求解析式.
    16、(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地
    【解析】
    分析:(1)根据速度,以及函数图象中的信息即可解决问题; (2)根据题意y=20x+40(0≤x≤10),画出函数图象即可; (3)利用方程组求交点坐标即可;
    详解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,
    返回的速度==80km/h,故答案为60(km/h),1,80(km/h).
    (2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,
    (3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)
    解方程组,解得得,
    答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.
    点睛:本题考查了一次函数的应用及速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.
    17、见解析.
    【解析】
    利用基本作图,作∠ABD的平分线交AD于E,则E到AB的距离等于ED.
    【详解】
    如图,点E为所作.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
    18、(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km
    【解析】
    (1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
    (2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;
    (3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
    【详解】
    (1)设y1=k1x,由图可知,函数图象经过点(10,600),
    ∴10k1=600,
    解得:k1=60,
    ∴y1=60x(0≤x≤10),
    设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则

    解得:
    ∴y2=-100x+600(0≤x≤6);
    (2)由题意,得
    60x=-100x+600
    x=,
    当0≤x<时,S=y2-y1=-160x+600;
    当≤x<6时,S=y1-y2=160x-600;
    当6≤x≤10时,S=60x;
    即;
    (3)由题意,得
    ①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,
    解得x=,
    此时,A加油站距离甲地:60×=150km,
    ②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,
    解得x=5,此时,A加油站距离甲地:60×5=300km,
    综上所述,A加油站到甲地距离为150km或300km.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、①③④
    【解析】
    根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
    【详解】
    根据图示及数据可知:
    ①k<0正确;
    ②a<0,原来的说法错误;
    ③方程kx+b=x+a的解是x=3,正确;
    ④当x>3时,y1<y2正确.
    故答案是:①③④.
    考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
    20、1
    【解析】
    由一次函数的解析式求得与坐标轴的交点,然后利用三角形的面积公式即可得出结论.
    【详解】
    由一次函数y=x+4可知:一次函数与x轴的交点为(-4,0),与y轴的交点为(0,4),
    ∴其图象与两坐标轴围成的图形面积=×4×4=1.
    故答案为:1.
    本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    21、
    【解析】
    分析:根据勾股定理的逆定理可判断三角形为直角三角形,然后根据直角三角形的面积求解即可.
    详解:∵三角形三边长分别为,,

    ∴三角形是直角三角形

    ∴高为
    故答案为.
    点睛:此题主要考查了勾股定理的逆定理的应用,利用勾股定理的逆定理判断此三角形是直角三角形是解题关键.
    22、.
    【解析】
    根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
    【详解】
    根据二次根式被开方数必须是非负数的条件,得.
    本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
    23、4
    【解析】
    由折叠的性质和等腰三角形的性质可得,∠EDF=∠EFD=∠BEF=∠AEB,由平行线的性质,可得∠AEB=∠CBE,进而得出结论.
    【详解】
    由折叠知,∠BEF=∠AEB,AE=FE,
    ∵点E是AD中点,
    ∴AE=DE,
    ∴ED=FE,
    ∴∠FDE=∠EFD,
    ∵∠AEF=∠EDF+∠DFE=∠AEB=∠BEF
    ∴∠AEB=∠EDF,
    ∵AD∥BC,
    ∴∠AEB=∠CBE,
    ∴∠EDF=∠EFD=∠BEF=∠AEB=∠CBE,
    故答案为:4
    本题属于折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是由等腰三角形的性质得出∠EDF=∠AEB.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3).
    【解析】
    (1)由白球3只、红球2只、黑球1只根据概率公式求解即可;
    (2)若取出的第1只球是红球,则剩余的5个球中有1个红球,根据概率公式求解即可;
    (3)先列举出所有等可能的情况数,再根据概率公式求解即可.
    【详解】
    解:(1)由题意得取出的球是黑球的概率为;
    (2)若取出的第1只球是红球,则剩余的5个球中有1个红球
    所以这时取出的球还是红球的概率是;
    (3)根据题意列表如下:
    共有36种组合,其中两次取出的球都是白球的有9中组合,则取出的球都是白球概率是.
    本题考查用列表法或树状图法求概率.解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
    25、(1),;(2)规定的时间是6天.
    【解析】
    (1)由“工作效率=工作量÷工作时间”即可得;
    (2)关键描述语为:“由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成”;本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
    【详解】
    (1)依题意得,甲的工作效率为 ,乙的工作效率为 .
    故答案为:,;
    (2)依题意得:+=1,
    解得 x=6,
    经检验,x=6是原方程的解且符合实际意义,
    答:规定的时间是6天.
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
    26、(1)x=5,x=−2;(2)-2
    【解析】
    (1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;
    (2)因为2x+6=2(x+3),所以可得方程最简公分母为2(x+3),然后去分母转化为整式方程求解.
    【详解】
    (1)x(x−3)=10,
    整理得:x−3x−10=0,
    (x−5)(x+2)=0,
    x−5=0,x+2=0,
    x=5,x=−2;
    (2)原方程的两边同时乘以2(x+3),
    得:4+3(x+3)=7,
    解这个方程,得x=−2,
    检验:将x=−2代入2(x+3)时,该式等于2,
    ∴x=−2是原方程的根
    此题考查解一元二次方程-因式分解法,解分式方程,掌握运算法则是解题关键
    题号





    总分
    得分
    国学知识
    现场写作
    经典诵读

    86
    70
    90

    86
    80
    90

    86
    85
    90
    相关试卷

    2024-2025学年江苏省江阴初级中学九上数学开学经典试题【含答案】: 这是一份2024-2025学年江苏省江阴初级中学九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年江苏省海安县白甸镇初级中学数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年江苏省海安县白甸镇初级中学数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了阅读理解等内容,欢迎下载使用。

    江苏省海安县白甸镇初级中学2023-2024学年数学八上期末质量跟踪监视试题含答案: 这是一份江苏省海安县白甸镇初级中学2023-2024学年数学八上期末质量跟踪监视试题含答案,共8页。试卷主要包含了一次函数的图象经过等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map