2024-2025学年吉林省德惠市第三中学数学九年级第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若一次函数的函数值随的增大而增大,则( )
A.B.C.D.
2、(4分)当分式有意义时,则x的取值范围是( )
A.x≠2B.x≠-2C.x≠D.x≠-
3、(4分)下列式子中一定是二次根式的是( )
A.B.C.D.
4、(4分)已知矩形的面积为36cm2,相邻的两条边长为xcm和ycm,则y与x之间的函数图像大致是
A.B.C.D.
5、(4分)如图,a,b,c分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是
A.B.C.D.
6、(4分)下列事件是随机事件的是 ( )
A.购买一张福利彩票,中特等奖
B.在一个标准大气压下,纯水加热到100℃,沸腾
C.任意三角形的内角和为180°
D.在一个仅装着白球和黑球的袋中摸出红球
7、(4分)函数的自变量的取值范围是( )
A.B.C.D.
8、(4分)下列四组线段中,不能构成直角三角形的是( )
A.4,5,6B.6,8,10C.7,24,25D.5,3,4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)关于t的分式方程=1的解为负数,则m的取值范围是______.
10、(4分)在□ABCD中,∠A=105º,则∠D=__________.
11、(4分)如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________
12、(4分)在实数范围内分解因式:x2﹣3=_____.
13、(4分)如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)计算:;
(2)解方程:.
15、(8分)如图所示,,分别表示使用一种白炽灯和一种节能灯的费用(元,分别用y1与y2表示)与照明时间(小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.
(1)根据图象分别求出,对应的函数(分别用y1与y2表示)关系式;
(2)对于白炽灯与节能灯,请问该选择哪一种灯,使用费用会更省?
16、(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
根据以上统计图,解答下列问题:
(1)求出本次接受调查的市民共有多少人?
(2)扇形统计图中,扇形E的圆心角度数是_________;
(3)请补全条形统计图;
(4)若该市约有80万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
17、(10分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.
(1)求证:四边形CDEF是平行四边形;
(2)求四边形CDEF的周长.
18、(10分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.
20、(4分)图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱体铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上). 现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.①图2中折线ABC表示___________槽中水的深度与注水时间之间的关系(选填“甲”或“乙”);②点B的纵坐标表示的实际意义是___________.
21、(4分)已知函数y=-3x的图象经过点A(1,y1),点B(﹣2,y2),则y1_____y2(填“>”“<”或“=”)
22、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
23、(4分)已知:正方形ABCD的边长为8,点E、F分别在AD、CD上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:
(1)
(2)
(3)
(4).
25、(10分)作平行四边形ABCD的高CE,B是AE的中点,如图.
(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.
(2)如果BE:CE=1: ,BC=3cm,求AB.
26、(12分)已知:一次函数y=(3﹣m)x+m﹣1.
(1)若一次函数的图象过原点,求实数m的值;
(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.
【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,
∴k-2>0,
∴k>2,
故选B.
【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
2、B
【解析】
根据分母不为零列式求解即可.
【详解】
分式中分母不能为0,
所以,3 x+6≠0,解得:x≠-2,
故选B.
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.
3、A
【解析】
一般地,我们把形如(a≥0)的式子叫做二次根式,据此进行判断即可.
【详解】
A. ,是二次根式;
B. 中,根指数为3,故不是二次根式;
C. 中,-2<0,故不是二次根式;
D. 中,x不一定是非负数,故不是二次根式;
故选A.
本题主要考查了二次根式的定义,解决问题的关键是理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.
4、A
【解析】
解:根据矩形的面积公式,得xy=36,即,是一个反比例函数
故选A
5、C
【解析】
根据图形就可以得到一个相等关系与一个不等关系,就可以判断a,b,c的大小关系.
【详解】
解:依图得3b<2a,
∴a>b,
∵2c=b,
∴b>c,
∴a>b>c
故选C.
本题考查了一元一次不等式的应用,解题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.
6、A
【解析】
选项A, 购买一张福利彩票,中特等奖,是随机事件;选项B,在一个标准大气压下,纯水加热到100℃,沸腾,是必然事件;选项C, 任意三角形的内角和为180°,是必然事件;选项D, 在一个仅装着白球和黑球的袋中摸出红球,是不可能事件.故选A.
7、C
【解析】
根据分母不为零分式有意义,可得答案.
【详解】
解:由题意,得
2019-x≠0,
解得x≠2019,
故选:C.
本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.
8、A
【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.
【详解】
解:A、42+52≠62,故不是直角三角形,符合题意;
B、62+82=102,能构成直角三角形,不符合题意;
C、72+242=252,能构成直角三角形,不符合题意;
D、32+42=52,能构成直角三角形,不符合题意.
故选:A.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、m<1
【解析】
分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m的范围即可.
【详解】
去分母得:m-5=t-2,
解得:t=m-1,
由分式方程的解为负数,得到m-1<0,且m-1≠2,
解得:m<1,
故答案为:m<1.
此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.
10、
【解析】
根据平行四边形的对角相等的性质即可求解.
【详解】
解:在□ABCD中,
∠A=105º,
故答案为:
本题考查平行四边形的性质,利用平行四边形对角相等的性质是解题的关键.
11、.
【解析】
过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.
【详解】
如图,过B作BP⊥AD于P,BQ⊥AC于Q,
由旋转可得,∠CAB=∠D,BD=BA=3,
∴∠D=∠BAD,
∴∠BAD=∠BAC,即AB平分∠DAC,
∴BP=BQ,
又∵Rt△ABC中,AB=3,BC=4,
∴AC=5,BQ=,
∴BP=,
∴Rt△ABP中,AP=,
∴AD=,
∴S△ABD=AD×BP=,
由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,
∴△ABD∽△CBE,
∴,即,
解得S△CBE=,
故答案为.
此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.
12、
【解析】
把3写成的平方,然后再利用平方差公式进行分解因式.
【详解】
解:x2﹣3=x2﹣()2=(x+)(x﹣).
本题考查平方差公式分解因式,把3写成的平方是利用平方差公式的关键.
13、1.
【解析】
试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.
试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2
∴DE是△ABC的中位线,
∴BC=2DE=2×2=1.
考点:三角形中位线定理.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2),
【解析】
见详解.
【详解】
解:(1)
(2),,
本题考查平方根的化简,要熟练掌握平方差公式.
15、(1)y1=x+2,y2=x+20(2)见解析
【解析】
(1)由图像可知,l1的函数为一次函数,则设y1=k1x+b1.由图象知,l1过点(0,2)、(500,17),能够得出l 1的函数解析式.同理可以得出l2的函数解析式.
(2)由图像可知l1、 l2的图像交于一点,那么交点处白炽灯和节能灯的费用相同,即x+2=x+20,由此得出x=1000时费用相同;x<1000时,使用白炽灯省钱;x>1000时,使用节能灯省钱.
【详解】
(1)设l1的函数解析式为y1=k1x+b1,
由图象知,l1过点(0,2)、(500,17),
可得方程组,解得,
故,l1的函数关系式为y1=x+2;
设l2的函数解析式为y2=k2x+b2,
由图象知,l2过点(0,20)、(500,26),
可得方程组,解得,
y2=x+20;
(2)由题意得,x+2=x+20,解得x=1000,
故,①当照明时间为1000小时时,两种灯的费用相同;
②当照明时间超过1000小时,使用节能灯省钱.
③当照明时间在1000小时以内,使用白炽灯省钱.
本题主要考查求一次函数的解析式、一次函数在实际生活中的应用.一次函数为中考重点考查内容,熟练掌握求一次函数解析式的方法是解决本题的关键.
16、(1)2000(2)(3)500(4)32万
【解析】
(1)由A组人数及其所占百分比可得总人数;
(2)用360°乘以对应比例即可得;
(3)用总人数乘以D所占百分比即可;
(4)利用样本估计总体思想求解可得.
【详解】
(1)本次接受调查的市民共有:(人);
(2)扇形E角的度数为:
(3)D选项的人数为:
补全条形统计图
(4)估计赞同“选育无絮杨品种,并推广种植”的人数为 (万人)
故估计赞同“选育无絮杨品种,并推广种植”的人数为32万人
本题考查了扇形统计图、条形统计图,观察统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小,条形统计图直接反映部分的具体数据.
17、 (1)证明见解析;(2)四边形CDEF的周长为2+2.
【解析】
(1)直接利用三角形中位线定理得出,再利用平行四边形的判定方法得出答案;
(2)利用等边三角形的性质结合平行四边形的性质得出,进而求出答案.
【详解】
(1)证明:、分别为、的中点,
是的中位线,
,
,
四边形是平行四边形;
(2)解:四边形是平行四边形,
,
为的中点,等边的边长是2,
,,,
,
四边形的周长.
此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.
18、原式=﹣3x1+4,当x=时,原式=﹣1.
【解析】
试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,
当x=时,原式=﹣6+4=﹣1.
考点:整式的化简求值.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.10
【解析】
由题意可知,将木块展开,
相当于是AB+2个正方形的宽,
∴长为2+0.2×2=2.4米;宽为1米.
于是最短路径为:
故答案是:2.1.
20、乙 乙槽中铁块的高度为14cm
【解析】
根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平.
【详解】
①根据题意可知图2中折线ABC表示乙槽中水的深度与注水时间之间的关系;
②点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm,
故答案为乙,乙槽中铁块的高度为14cm.
本题考查了实际问题与函数的图象,理解题意,准确识图是解决此类问题的关键.
21、<.
【解析】
分别把点A(-1,y1),点B(-2,y2)代入函数y=-3x,求出y1,y2的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-2,y2)是函数y=-3x上的点,
∴y1=3,y2=6,
∵6>3,
∴y2>y1.
考点:一次函数图象上点的坐标特征.
22、1
【解析】
分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.
详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.
故答案为:1.
点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
23、5
【解析】
根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°;然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.
【详解】
∵四边形ABCD为正方形,
∴∠BAE=∠D=90°,AB=AD,
在△ABE和△DAF中,∵AB=AD,∠BAE=∠D,AE=DF,
∴△ABE≌△DAF(SAS),
∴∠ABE=∠DAF,
∵∠ABE+∠BEA=90°,
∴∠DAF+∠BEA=90°,
∴∠AGE=∠BGF=90°,
∵点H为BF的中点,
∴GH=BF,
∵BC=8,CF=CD-DF=8-2=6,
∴BF==10,
∴GH=BF=5.
本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2);(3);(4).
【解析】
(1)先进行二次根式的乘除运算,然后合并即可;
(2)先把各二次根式化简为最简二次根式,然后去括号合并即可;
(3)利用平方差公式和完全平方公式计算;
(4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)原式
;
(4)原式
.
故答案为(1);(2);(3);(4).
本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
25、(1)BD⊥AE,理由见解析;(2)(cm).
【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;
(2)直接利用勾股定理得出BE的长,进而得出答案.
【详解】
解:(1)对,
理由:∵ABCD是平行四边形,
∴CD∥AB且CD=AB.
又B是AE的中点,
∴CD∥BE且CD=BE.
∴BD∥CE,
∵CE⊥AE,
∴BD⊥AE;
(2)设BE=x,则CE=x,
在Rt△BEC中:x2+(x)2=9,
解得:x=,
故AB=BE=(cm).
此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.
26、(1)m=1;(2)3<m<1
【解析】
(1)由一次项系数非零及一元一次函数图象上点的坐标特征,可得出关于m的一元一次不等式及一元一次方程,解之即可得出实数m的值;
(2)由一次函数的图象经过第二、三、四象限,利用一次函数图象与系数的关系可得出关于m的一元一次不等式组,解之即可得出实数m的取值范围.
【详解】
(1)∵一次函数y=(3﹣m)x+m﹣1的图象过原点,
∴,
解得:m=1.
(2)∵一次函数y=(3﹣m)x+m﹣1的图象经过第二、三、四象限,
∴,
解得:3<m<1.
本题考查了一次函数图象与系数的关系以及一次函数图象上点的坐标特征,解题的关键是:(1)根据一次项系数非零及一元一次函数图象上点的坐标特征,找出关于m的一元一次不等式及一元一次方程;(2)牢记“k<0,b<0⇔y=kx+b的图象在二、三、四象限”.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年吉林省长春市德惠市第十九中学数学九上开学经典试题【含答案】: 这是一份2024-2025学年吉林省长春市德惠市第十九中学数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省德惠市大区数学九上开学检测模拟试题【含答案】: 这是一份2024-2025学年吉林省德惠市大区数学九上开学检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年吉林省安图县第三中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年吉林省安图县第三中学数学九年级第一学期开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。