2024-2025学年河北省保定阜平县联考九上数学开学学业水平测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列变形不正确的是( )
A.B.C.D.
2、(4分)如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是( )
A.B.C.D.
3、(4分)一个等腰三角形的两边长分别是3和7,则它的周长为( )
A.17B.15C.13D.13或17
4、(4分)方差是表示一组数据的
A.变化范围B.平均水平C.数据个数D.波动大小
5、(4分)下列图象能表示一次函数的是( )
A.B.C.D.
6、(4分)下列各组长度的线段中,可以组成直角三角形的是( )
A.1,2,3B.1,,3C.5,6,7D.5,12,13
7、(4分)如图,将□ABCD的一边BC延长至点E,若∠A=110°,则∠1等于( )
A.110°B.35°C.70°D.55°
8、(4分)下列多项式中,可以提取公因式的是( )
A.ab+cdB.mn+m2
C.x2-y2D.x2+2xy+y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)比较大小:32_____23.
10、(4分)一组数据10,9,10,12,9的中位数是__________.
11、(4分)分解因式:x2y﹣y3=_____.
12、(4分)已知正n边形的一个外角是45°,则n=____________
13、(4分)在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)在中,BD是它的一条对角线,过A、C两点分别作,,E、F为垂足.
(1)如图,求证:;
(2)如图,连接AC,设AC、BD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.
15、(8分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).
(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;
(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?
16、(8分)如图,△ABC在直角坐标系中.
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
17、(10分)(1)化简求值:,其中.
(2)解不等式组:,并把它的解集在数轴上表示出来.
18、(10分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地
点出发,甲的速度为7,乙的速度为1.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
20、(4分)在四边形中,同一条边上的两个角称为邻角.如果一个四边形一条边上的邻角相等,且这条边的对边上的邻角也相等,那么这个四边形叫做C形.根据研究平行四边形及特殊四边形的方法,在下面的横线上至少写出两条关于C形的性质:_____.
21、(4分)图中的虚线网格是等边三角形,它的每一个小三角形都是边长为1的等边三角形.
(1)如图①,连接相邻两个小正三角形的顶点A,B,则AB的长为_______
(2)在如图②所示的网格中,用无刻度的直尺,画一个斜边长为的直角三角形,且它的顶点都在格点上.
22、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
23、(4分)若矩形的边长分别为2和4,则它的对角线长是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):
次数,1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中数据,解答下列问题:
(1)计算甲、乙测验成绩的平均数.
(2)写出甲、乙测验成绩的中位数.
(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)
(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.
25、(10分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.
(1)求A,B两种型号的机器人每小时分别搬运多少材料;
(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?
26、(12分)小明同学为了解自己居住的小区家庭生活用水情况,从中随机调查了其中的家庭一年的月平均用水量(单位:顿).并将调查结果制成了如图所示的条形和扇形统计图.
小明随机调查了 户家庭,该小区共有 户家庭;
, ;
这个样本数据的众数是 ,中位数是 ;
根据样本数据,请估计该小区家庭月平均用水量不超过吨的有多少户?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据分式的基本性质:分式的分子和分母扩大还是缩小相同的倍数,分式的值不变进行解答.
【详解】
,A正确;
,B正确;
,C正确;
,D错误,
故选D.
本题考查的是分式的基本性质,解题的关键是正确运用分式的基本性质和正确把分子、分母进行因式分解.
2、B
【解析】
根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.
【详解】
根据题意列树状图得:
∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,
∴两个指针同时指在偶数上的概率为: ,
故选B
本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.
3、A
【解析】
试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.
考点:等腰三角形的性质
4、D
【解析】
根据方差的意义进行求解即可得.
【详解】
方差是用来表示一组数据波动大小的量,
故选D.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5、D
【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.
【详解】
y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.
考查了一次函数的性质,解题的关键是能够分类讨论.
6、D
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.
【详解】
A、12+22≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
B、12+()2≠32,根据勾股定理的逆定理不是直角三角形,故此选项错误;
C、52+62≠72,根据勾股定理的逆定理不是直角三角形,故此选项错误;
D、52+122=132,根据勾股定理的逆定理是直角三角形,故此选项正确.
故选:D.
此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、C
【解析】
根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.
【详解】
∵四边形ABCD是平行四边形,
∴∠BCD=∠A=110°,
∴∠1=180°﹣∠BCD=180°﹣110°=70°,
故选C.
本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.
8、B
【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.
【详解】
解:A.ab+cd,没有公因式,故此选项错误;
B.mn+m2=m(n+m),故此选项正确;
C.x2﹣y2,没有公因式,故此选项错误;
D.x2+2xy+y2,没有公因式,故此选项错误.
故选B.
本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、>
【解析】
先计算乘方,再根据有理数的大小比较的方法进行比较即可.
【详解】
∵32=9,23=8,9>8,
∴32>23.
故答案为>.
本题考查了有理数大小比较,同号有理数比较大小的方法:
都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,
(1)作差,差大于0,前者大,差小于0,后者大;
(2)作商,商大于1,前者大,商小于1,后者大.
都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.
异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,
都是字母:就要分情况讨论
10、1
【解析】
根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.
【详解】
将数据按从小到大排列为:9,9,1,1 12,处于中间位置也就是第3位的是1,因此中位数是1,
故答案为:1.
此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.
11、y(x+y)(x﹣y).
【解析】
试题分析:先提取公因式y,再利用平方差公式进行二次分解.
解:x2y﹣y3
=y(x2﹣y2)
=y(x+y)(x﹣y).
故答案为y(x+y)(x﹣y).
12、8
【解析】
解:∵多边形的外角和为360°,正多边形的一个外角45°,
∴多边形得到边数360÷45=8,所以是八边形.
故答案为8
13、,
【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;
(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积
【详解】
解:(1)将绕点A旋转后得到,连接
绕点A旋转后得到
根据勾股定理得
(2)过点A作于点G
由(1)知,即为等腰直角三角形,
根据勾股定理得
故答案为:(1). , (2).
本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)OA、OC、EF.
【解析】
(1)根据平行四边形的AD∥BC,AB∥CD,AD=BC,AB=CD,根据平行线的性质得到∠ADE=∠CBF,由垂直的定义得到∠AEB=∠CFD=90°,根据全等三角形的性质即可得到结论;
(2)根据平行四边形的性质得到AO=CO,根据直角三角形的性质即可得到结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形
∴
∴
∵,,
∴
在和中
∴
∴
(2)∵四边形ABCD是平行四边形,
∴AO=CO,
∵∠DOC=120°,
∴∠AOE=60°,
∴∠OAE=30°,
∴AO=2OE,
∴OC=2OE,
∵OD=OB,DE=BF,
∴OE=OF,
∴EF=2OE.
本题考查了平行四边形的性质,全等三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.
15、(1);(2)t=3.5或t=
【解析】
(1)过点M作MH⊥AB,垂足为H,用含的代数式表示的长,再利用三角形面积公式即可得到答案.(2)先用含的代数式分别表示的长,进行分类讨论,利用腰相等建立方程求解.
【详解】
(1)如图,过点M作MH⊥AB,垂足为H,则四边形BCMH为矩形.
∴MH=BC=2.
∵AN=16-t,
∴;
(2)由(1)可知:BH=CM=2t,BN=t,.
以A、M、N三点为顶点的三角形是等腰三角形,可以分三种情况:
①若MN=AN.因为:
在Rt△MNH中,,所以:MN2=t2+22,
由MN2=AN2得t2+22=(16-t)2,
解得t=.
②若AM=AN.
在Rt△MNH中,AM2=(16-2t)2+22.
由AM2=AN2得:,
即3t2-32t+144=4.
由于△=,
∴3t2-32t+144=4无解,
∴.
③若MA=MN.
由MA2=MN2,得t2+22=(16-2t)2+22
整理,得3t2-64t+256=4.
解得,t2=16(舍去)
综合上面的讨论可知:当t=秒或t=秒时,以A、M、N三点为顶点的三角形是等腰三角形.
本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.
16、 (1)A1(-3,0),B1(2,3),C1(-1,4),图略 (2)S△ABC=1
【解析】
(1)根据平移的性质,结合已知点A,B,C的坐标,即可写出A1、B1、C1的坐标,(2)根据点的坐标的表示法即可写出各个顶点的坐标,根据S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF,即可求得三角形的面积.
【详解】
(1)如图所示.根据题意得:A1、B1、C1的坐标分别是:A1(﹣3,0),B1(2,3),C1(﹣1,4);
(2)S△ABC=S长方形ADEF﹣S△ABD﹣S△EBC﹣S△ACF
=4×53×53×12×4
=204
=1.
本题考查了点的坐标的表示,以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.
17、(1),原式;(2).把它的解集在数轴上表示出来见解析.
【解析】
(1)首先计算括号里面同分母的分式减法,然后除以括号外面的分式时,要乘以它的倒数,然后进行约分化简,代入求值;
(2)分别解两个不等式,得到不等式组的解集,然后在数轴上表示解集即可.
【详解】
解:(1),
把代入得:原式;
(2),
由①得,
由②得,
∴原不等式组的解集是.
在数轴上表示解集如下:
解题关键:
(1)化简过程中运用到分式的通分,找准最简公分母是关键;还运用到分式的约分,利用乘法公式把分式的分子分母因式分解之后进行约分;
(2)熟练掌握不等式的解法,在数轴上表示解集时,一定注意是空心点还是实心点.
18、甲走了24.5步,乙走了10.5步
【解析】
试题分析:设经x秒二人在B处相遇,然后利用勾股定理列出方程即可求得甲乙两人走的步数.
试题解析:设经x秒二人在B处相遇,这时乙共行AB=1x,
甲共行AC+BC=7x,
∵AC=10,
∴BC=7x﹣10,
又∵∠A=90°,
∴BC2=AC2+AB2,
∴(7x﹣10)2=102+(1x)2,
∴x=0(舍去)或x=1.5,
∴AB=1x=10.5,
AC+BC=7x=24.5,
答:甲走了24.5步,乙走了10.5步.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、150°
【解析】
首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.
【详解】
解:连接PQ,
由题意可知△ABP≌△CBQ
则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,
∵△ABC是等边三角形,
∴∠ABC=∠ABP+∠PBC=60°,
∴∠PBQ=∠CBQ+∠PBC=60°,
∴△BPQ为等边三角形,
∴PQ=PB=BQ=4,
又∵PQ=4,PC=5,QC=3,
∴PQ2+QC2=PC2,
∴∠PQC=90°,
∵△BPQ为等边三角形,
∴∠BQP=60°,
∴∠BQC=∠BQP+∠PQC=150°
∴∠APB=∠BQC=150°
本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.
20、是轴对称图形;对角线相等;有一组对边相等;有一组对边平行.
【解析】
根据C形的定义,利用研究平行四边形及特殊四边形的方法,从边、角、对角线以及对称性这几个方面分析即可.
【详解】
根据C形的定义,称C形中一条边上相等的邻角为C形的底角,这条边叫做C形的底边,夹在两底边间的边叫做C形的腰.则C形的性质如下:
C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形.
故答案为:C形的两底边平行;C形的两腰相等;
C形中同一底上的两个底角相等;C形的对角互补;
C形的两条对角线相等;
C形是轴对称图形
本题考查了平行四边形性质的应用,学生的阅读理解能力与知识的迁移能力,掌握研究平行四边形及特殊四边形的方法,并且能够灵活运用是解题的关键.
21、 (1);(2)见解析.
【解析】
(1)利用等边三角形的性质,解直角三角形即可解决问题.
(2)利用数形结合的思想解决问题即可(答案不唯一).
【详解】
解:(1)AB=2×1×cs30°=,
故答案为:.
(2)如图②中,△DEF即为所求.
本题考查作图——应用与设计,等边三角形的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22、 ,
【解析】
根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
【详解】
a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
故答案为:,.
考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
23、2.
【解析】
根据矩形的性质得出∠ABC=90°,AC=BD,根据勾股定理求出AC即可.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD,
在Rt△ABC中,AB=2,BC=4,由勾股定理得:AC=,
∴
故答案为:
本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.
二、解答题(本大题共3个小题,共30分)
24、 (1)80分,80分 ;(2)80分; (3)9.33,11.33 ;(4)派甲去.
【解析】
试题分析:本题考查了方差, 算术平均数, 中位数的计算.
(1)由平均数的计算公式计算甲、乙测试成绩的平均分;
(2)将一组数据从小到大(或从大到小)重新排列后,中间两个数的平均数是甲、乙测试成绩的中位数;
(3)由方差的计算公式计算甲、乙测试成绩的方差;
(4)方差越小,表明这个同学的成绩偏离平均数越小,即波动越小,成绩越稳定.
解:(1)x甲=(分),
x乙=(分).
(2)甲、乙测验成绩的中位数都是80分.
(3)=[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,
=[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.
(4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.
25、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.
【解析】
(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解即可得;
(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式进行求解即可得.
【详解】
(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,
根据题意,得,
解得x=120,
经检验,x=120是所列方程的解,
当x=120时,x+30=150,
答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;
(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台,
根据题意,得150a+120(20﹣a)≥2800,
解得a≥,
∵a是整数,
∴a≥14,
答:至少购进A型机器人14台.
本题考查了分式方程的应用,一元一次不等式的应用,读懂题意,找到关键描述语句,找准等量关系以及不等关系是解题的关键.
26、; ; ; 估计该小区家庭月平均用水量不超过顿的有户
【解析】
(1)根据13吨的用户20户所占的比例为20%,即可计算出随机调查的家庭数,再根据随机调查的10%的家庭即可求出该小区的家庭户数.
(2)根据(1)计算的调查总数减去10吨、12吨、13吨、14吨的家庭数量即可计算出m的值,再根据14吨的家庭数除以调查的总数即可计算出n的值.
(3)根据条形图即可计算出样本的众数和中位数.
(4)首先计算11吨和12吨的家庭所占的比例在根据小区的总数即可计算出不超过顿的有多少户.
【详解】
解:;
;
根据条形统计图可得11吨的有40个家庭是最多的,所以众数是11吨;
根据统计条形图可得中位数也是11吨.
答:估计该小区家庭月平均用水量不超过吨的有户
本题主要考查条形图和扇形图的计算问题,这是考试的热点,容易得分,熟练掌握计算.
题号
一
二
三
四
五
总分
得分
2024-2025学年贵州省六盘水市九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年贵州省六盘水市九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西玉林博白县九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年广西玉林博白县九上数学开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。