2024-2025学年河北省霸州市数学九上开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF一定是平行四边形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
2、(4分)解关于的方程(其中为常数)产生增根,则常数的值等于( )
A.-2B.2C.-1D.1
3、(4分)如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为( )cm.
A.4B.6C.4D.3
4、(4分)已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:
则该二次函数图象的对称轴为( )
A.y轴B.直线x=C.直线x=1D.直线x=
5、(4分)如图,小明在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于的长为半径画弧,两弧相交于C、D两点,直线CD即为所求.根据他的作图方法可知四边形一定是( )
A.矩形B.菱形C.正方形D.无法确定
6、(4分)如图,在中,,,垂足为,点是边的中点,,,则( )
A.8B.7.5C.7D.6
7、(4分)下列各式中,与是同类二次根式的是( )
A.B.C.D.
8、(4分)下列四组线段中,可以构成直角三角形的是( )
A.4,5,6B.2,3,4C.1.5,2,2.5D.1,,3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一粒米的重量约为0.000036克,用科学记数法表示为_____克.
10、(4分)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是_____米/分钟.
11、(4分)如果一组数据的方差为,那么这组数据的标准差是________.
12、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
13、(4分)要使分式的值为0,则x的值为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,点A(a,b)在平面直角坐标系xOy中,点A到坐标轴的垂线段AB,AC与坐标轴围成矩形OBAC,当这个矩形的一组邻边长的和与积相等时,点A称作“垂点”,矩形称作“垂点矩形”.
(1)在点P(1,2),Q(2,-2),N(,-1)中,是“垂点”的点为 ;
(2)点M(-4,m)是第三象限的“垂点”,直接写出m的值 ;
(3)如果“垂点矩形”的面积是,且“垂点”位于第二象限,写出满足条件的“垂点”的坐标 ;
(4)如图2,平面直角坐标系的原点O是正方形DEFG的对角线的交点,当正方形DEFG的边上存在“垂点”时,GE的最小值为 .
15、(8分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
阅读时间分组统计表
请结合以上信息解答下列问题:
(1)求a,b,c的值;
(2)补全“阅读人数分组统计图”;
(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.
16、(8分)已知矩形 ABCD 的一条边 AD=8,将矩形 ABCD 折叠,使得顶点 B 落在 CD 边上的 P 点处.
(1)求证:△OCP∽△PDA;
(2)若△OCP 与△PDA 的面积比为 1:4,求边 AB 的长;
17、(10分)定义:有三个角相等的四边形叫做三等角四边形.
(1)在三等角四边形中,,则的取值范围为________.
(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;
(3)如图②,三等角四边形中,,若,,,则 的长度为多少?
18、(10分)2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下
收集数据
甲、乙两班被调查者读课外书数量(单位:本)统计如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述数据绘制统计表如下,请补全下表:
分析数据、推断结论
(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人;
(2)你认为哪个班同学寒假读书情况更好,写出理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,的对角线,相交于点,且,,那么的周长是________.
20、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
21、(4分)计算______.
22、(4分)若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为_____
23、(4分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的直角边OB在x轴的正半轴上,反比例函数的图象经过斜边OA的中点D,与直角边AB相交于点C.
①若点,求点C的坐标:
②若,求k的值.
25、(10分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
26、(12分)解不等式组,并在数轴上把解集表示出来.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平行四边形的判定方法一一判断即可;
【详解】
解:A、由AE=CF,可以推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
B、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形;
C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,结合DF∥EB,可得四边形DEBF是平行四边形;
故选:B.
本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2、C
【解析】
分式方程去分母转化为整式方程,由分式方程有增根,得到x-5=0,求出x的值,代入整式方程计算即可求出m的值.
【详解】
解:去分母得:x-6+x-5=m,
由分式方程有增根,得到x-5=0,即x=5,
把x=5代入整式方程得:m=-1,
故选:C.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
3、C
【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的长.
【详解】
∵△AOB是等边三角形,
∴∠BAC=60°,
∴∠ACB=30°,
∵AC=8cm,
∴AB=4cm,
在Rt△ABC中,cm,
∵AD=BC,
∴AD的长为4cm.
故选:C.
本题考查的是矩形的性质,关键是根据在直角三角形中,30°的锐角所对的直角边等于斜边的一半;以及勾股定理解答.
4、D
【解析】
观察表格可知:当x=0和x=3时,函数值相同,∴对称轴为直线x= .故选D.
5、B
【解析】
根据菱形的判定方法:四边都相等的四边形是菱形判定即可.
【详解】
根据作图方法可得:,
因此四边形ABCD一定是菱形.
故选:B
本题考查了菱形的判定,解题的关键在于根据四边相等的四边形是菱形判断.
6、B
【解析】
根据直角三角形的性质得到AE=BE=CE=AB=5,根据勾股定理得到CD==3,根据三角形的面积公式即可得到结论.
【详解】
解:∵在△ABC中,∠ACB=90°,C点E是边AB的中点,
∴AE=BE=CE=AB=5,
∵CD⊥AB,DE=4,
∴CD==3,
∴S△AEC=S△BEC=×BE•CD=×5×3=7.5,
故选:B.
本题考查了直角三角形斜边上的中线,能求出AE=CE是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半
7、B
【解析】
先化简二次根式,再根据同类二次根式的定义判定即可.
【详解】
解:A、与的被开方数不同,不是同类二次根式,故本选项错误.
B、=2,与的被开方数相同,是同类二次根式,故本选项正确.
C、与的被开方数不同,不是同类二次根式,故本选项错误.
D、=3 ,与的被开方数不同,不是同类二次根式,故本选项错误.
故选:B.
本题考查同类二次根式,解题的关键是二次根式的化简.
8、C
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;
B、22+32=13≠42,不可以构成直角三角形,故B选项错误;
C、1.52+22=6.25=2.52,可以构成直角三角形,故C选项正确;
D、,不可以构成直角三角形,故D选项错误.
故选:C.
本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.6×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000036=3.6×10﹣1;
故答案为:3.6×10﹣1.
本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
10、80
【解析】
根据图形找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出直线OF的解析式.
【详解】
.解:观察图形可得出:点A的坐标为(5,560),点B的坐标为(12,0),
设线段AB的解析式为y=kx+b(k≠0),
∴ ,解得:,
∴线段AB的解析式为y=﹣80x+960(5≤x≤12).
当x=6时,y=480,
∴点F的坐标为(6,480),
∴直线OF的解析式为y=80x.
所以相遇时强强的速度是80米/分钟.
故答案为80
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察图形找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
11、
【解析】
求出9的算术平方根即可.
【详解】
∵S²=9,S==3,
故答案为3
本题考查的是标准差的计算,计算标准差需要先知道方差,标准差即方差的算术平方根.
12、
【解析】
【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
【详解】因为,已知直线在轴上的截距是-2,
所以,b=-2.
又直线与直线平行,
所以,k=3.
故答案为:
【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
13、-2.
【解析】
分式的值为零的条件是分子等于0且分母不等于0,
【详解】
因为分式的值为0,
所以x+2=0且x-1≠0,
则x=-2,
故答案为-2.
三、解答题(本大题共5个小题,共48分)
14、(1)Q;(2)-;(3)(-4,),(-,4);(4)1
【解析】
(1)根据“垂点”的意义直接判断即可得出结论;
(2)根据“垂点”的意义建立方程即可得出结论;
(3)根据“垂点”的意义和矩形的面积建立方程即可得出结论;
(4)先确定出直线EF的解析式,利用“垂点”的意义建立方程,利用非负性即可确定出m的范围,即可得出结论.
【详解】
解:(1)∵P(1,2),∴1+2=3,1×2=2,
∵2≠3,∴点P不是“垂点”,
∵Q(2,﹣2),∴2+2=4,2×2=4,∴Q是“垂点”.
∵N(,﹣1),∴+1=×1=,
∵,∴点N不是“垂点”,
故答案为Q;
(2)∵点 M(﹣4,m)是第三象限的“垂点”,∴4+(﹣m)=4×(﹣m),∴m=﹣,
故答案为﹣;
(3)设“垂点”的坐标为(a,b),∴﹣a+b=﹣ab,
∵“垂点矩形”的面积为,∴﹣ab=.
即:﹣a+b=﹣ab=,
解得:a=﹣4,b=或a=﹣,b=4,∴“垂点”的坐标为(﹣4,)或(﹣,4),
故答案为(﹣4,)或(﹣,4),.
(4)设点E(m,0)(m>0),
∵四边形EFGH是正方形,∴F(0,m),y=﹣x+m.设边EF上的“垂点”的坐标为(a,﹣a+m),∴a+(﹣a+m)=a(﹣a+m)
∴a2﹣am=﹣m,∴(a﹣)2=≥0,∴m2﹣4m=m(m﹣4)≥0,
∵m>0,∴m﹣4≥0,∴m≥4,∴m的最小值为4,∴EG的最小值为2m=1,
故答案为1.
本题是四边形的综合题,主要考查了正方形的性质,矩形的面积公式,理解新定义和应用新定义的能力,解答本题的关键是用方程的思想解决问题.
15、 (1)20,200,40;(2)补全图形见解析;(3) 24%.
【解析】
分析:(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得:进而求得b的值;
(2)根据(1)的结果即可作出;
(3)根据百分比的定义即可求解.
详解:(1)由图表可知,调查的总人数为 140÷28%=500(人),
∴b=500×40%=200,
c=500×8%=40,
则a=500-(100+200+140+40)=20,
(2)补全图形如图所示.
(3)由(1)可知×100%=24% .
答:估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比为24%.
点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题
16、(1)见解析;(2)边AB的长为10.
【解析】
(1)只需证明两对对应角分别相等即可证到两个三角形相似;
(2)根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
【详解】
(1)∵四边形ABCD是矩形,
∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.
∴∠APD=90°−∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.
∴△OCP∽△PDA.
(2)∵△OCP与△PDA的面积比为1:4,
∴====.
∴PD=2OC,PA=2OP,DA=2CP.
∵AD=8,
∴CP=4,BC=8.
设OP=x,则OB=x,CO=8−x.
在Rt△PCO中,
∵∠C=90°,CP=4,OP=x,CO=8−x,
∴x2=(8−x)2+42.
解得:x=5.
∴AB=AP=2OP=10.
∴边AB的长为10.
本题考查相似三角形的判定与性质和翻折变换(折叠问题),解题的关键是掌握相似三角形的判定与性质和翻折变换.
17、(1);(2)见解析;(3)的长度为.
【解析】
(1)根据四边形的内角和是360°,确定出∠BAD的范围;
(2)由四边形DEBF为平行四边形,得到∠E=∠F,且∠E+∠EBF=180°,再根据等角的补角相等,判断出∠DAB=∠DCB=∠ABC即可;
(3)延长BA,过D点作DG⊥BA,继续延长BA,使得AG=EG,连接DE;延长BC,过D点作DH⊥BC,继续延长BC,使得CH=HF,连接DF,由SAS证明△DEG≌△DAG,得出AD=DE=,∠DAG=∠DEA,由SAS证明△DFH≌△DCH,得出CD=DF=6,∠DCH=∠DFH,证出DE∥BF,BE∥DF,得出四边形DEBF是平行四边形,得出DF=BE=6,DE=BF=,由等腰三角形的性质得出EG=AG=(BE-AB)=1,在Rt△DGA中,由勾股定理求出DG==4,由平行四边形DEBF的面积求出,在Rt△DCH中,由勾股定理求出,即可得出BC的长度.
【详解】
(1)∵
∴
∴
∵
∴
∴
故答案为:
(2)证明:∵四边形为平行四边形,
∴,
∴
∵,
∴
∵,,
∴
∴四边形是三等角四边形;
(3)延长,过点作,继续延长,使得,连接;延长,过点作,继续延长,使得,连接,如图所示:
在和中,
∴,
∴,
同理可得,
∴,
∵
∴,
∴,
∴四边形是平行四边形,
∴,,
∴
在中,
∵平行四边形的面积,
即:
∴
在中,
∴
故答案为:的长度为.
本题是四边形综合题目,考查了三等角四边形的判定与性质,翻折变换-折叠问题,四边形的内角和定理,平行四边形的判定与性质,全等三角形的判定与性质,勾股定理,等腰三角形的性质等知识;本题综合性强,有一定难度,证明三角形全等和运用勾股定理是解决问题的关键.
18、统计图补全见解析 (1)12 (2)乙班,理由见解析
【解析】
根据平均数、众数、中位数、方差的概念填表
(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;
(2)根据方差的性质进行判断即可.
【详解】
甲组的众数是2,乙组中位数是
乙组的平均数:
甲组的方差:
补全统计表如下:
(1)
(人)
故估计读6本书的同学大概有12人;
(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学.
本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据平行四边形的对角线互相平分可得出OC+OD=(AC+BD),再由平行四边形的对边相等可得AB=CD=6,继而代入可求出△OCD的周长
【详解】
∵的对角线,相交于点,
∴,,.
∵,
∴,
∴
故答案为:1.
此题考查了平行四边形的性质,属于基础题,解答本题的关键是熟练掌握平行四边形的对边相等及对角线互相平分的性质,难度一般.
20、
【解析】
易证得≌,则可证得结论正确;
由≌,可得,证得,选项正确;
证明是等腰直角三角形,求得选项正确;
证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
【详解】
解:四边形ABCD是正方形,
,,
在和中,
,
≌,
,
故正确;
由知:≌,
,
,
,
故正确;
四边形ABCD是正方形,
,,
是等腰直角三角形,
,
,
故正确;
四边形ABCD是正方形,
,,
在和中,
,
≌,
,
,
故正确;
故答案为:.
此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
21、
【解析】
先进行二次根式的化简,然后合并.
【详解】
解:原式.
故答案为:.
本题考查了二次根式的加减法,正确化简二次根式是解题的关键.
22、x≥-3且x≠1
【解析】
根据二次根式有意义的条件可得x+3≥0,根据零次幂底数不为零可得x-1≠0,求解即可.
【详解】
解:由题意得:x+3≥0,且x-1≠0,
解得:x≥-3且x≠1.
故答案为x≥-3且x≠1.
此题主要考查了二次根式和零次幂,关键是掌握二次根式中的被开方数是非负数;a0=1(a≠0).
23、1
【解析】
试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.
解:根据题意得:
1200×=1(人),
答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;
故答案为1.
考点:用样本估计总体.
二、解答题(本大题共3个小题,共30分)
24、①(4,);②k=12
【解析】
①根据点D是OA的中点即可求出D点坐标,再将D的坐标代入解析式求出解析式,从而得到C的坐标;
②连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD的面积,再根据条件列出方程求k的值即可。
【详解】
解:①∵D是OA的中点,点A的坐标为(4,6),
∴D(,),即(2,3)
∴k=2×3=6
∴解析式为
∵A的坐标为(4,6),AB⊥x轴
∴把x=4代入得y=
∴C的坐标为(4,)
②连接OC,
设A(a,b),则D(,)
可得k=,ab=4k
∴解析式为
∴B(a,0),C(a,)
∴
∴
解得:k=12
本题考查了一次函数的性质,要正确理解参数k的几何意义,能用代数式表达三角形OCD的面积是解题的关键。
25、解:(1)1.
(2) 40;2.
(3)3.
(4)学校购买其他类读物900册比较合理.
【解析】
(1)∵从条形图得出文学类人数为:70,从扇形图得出文学类所占百分比为:35%,
∴本次调查中,一共调查了:70÷35%=1人.
(2)∵从扇形图得出科普类所占百分比为:30%,
∴科普类人数为:n=1×30%=2人, 艺术类人数为:m=1﹣70﹣30﹣2=40人.
(3)根据艺术类读物所在扇形的圆心角是:40÷1×32°=3°.
(4)根据喜欢其他类读物人数所占的百分比为 ,
则200册中其他读物的数量: (本).
26、x>1
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解:
解不等式①,得x>1,
解不等式②,得x≥-4,
把不等式①和②的解集在数轴上表示出来为:
∴原不等式组的解集为x>1,
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解. 不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.
题号
一
二
三
四
五
总分
得分
x
﹣1
0
1
2
3
y
5
1
﹣1
﹣1
1
组别
阅读时间x(h)
人数
A
0≤x<10
a
B
10≤x<20
100
C
20≤x<30
b
D
30≤x<40
140
E
x≥40
c
班级
平均数
众数
中位数
方差
甲
4
3
乙
6
3.2
每周课外阅读时间(小时)
0~1
1~2(不含1)
2~3(不含2)
超过3
人 数
7
10
14
19
班级
平均数
众数
中位数
方差
甲
4
2
3
6.6
乙
4
6
4.5
3.2
2024-2025学年河北省保定阜平县联考九上数学开学学业水平测试试题【含答案】: 这是一份2024-2025学年河北省保定阜平县联考九上数学开学学业水平测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省铜仁松桃县联考数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省罗甸县联考数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省罗甸县联考数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。