2024-2025学年广西柳州市数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )
A.2B.C.4D.6
2、(4分)如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是( )
A.杨辉B.刘徽C.祖冲之D.赵爽
3、(4分)点向右平移2个单位得到对应点,则点的坐标是( )
A.B.C.D.
4、(4分)计算的结果是( )
A.﹣2B.﹣1C.1D.2
5、(4分)函数y=﹣x﹣3的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
6、(4分)用一长一短的两根木棒,在它们的中心处固定一个小螺钉,做成一个可转动的叉形架,四个顶点用橡皮筋连成一个四边形,转动木条,这个四边形变成菱形时,两根木棒所成角的度数是( )
A.90°B.60°C.45°D.30°
7、(4分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是( )
A.12B.16C.19D.25
8、(4分)下列计算正确的是
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,,、分别是、的中点,平分,交于点,若,,则的长是______.
10、(4分)已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
11、(4分)如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.
12、(4分)直线向上平移4个单位后,所得直线的解析式为________.
13、(4分)正比例函数图象与反比例函数图象的一个交点的横坐标为,则______.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)因式分解:; (2)计算:.
15、(8分)一个二次函数的图象经过(﹣1,﹣1),(0,0),(1,9)三点
(1)求这个二次函数的解析式.
(2)若另外三点(x1,21),(x2,21),(x1+x2,n)也在该二次函数图象上,求n的值.
16、(8分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润
17、(10分)如图:BE、CF是锐角△ABC的两条高,M、N分别是BC、EF的中点,若EF=6,BC=24.
(1)证明:∠ABE=∠ACF;
(2)判断EF与MN的位置关系,并证明你的结论;
(3)求MN的长.
18、(10分)如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0), B(0,4).
(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3,过点A(2,0)的直线交y轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M.求的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:________.
20、(4分)如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.
21、(4分)当x=______时,分式的值为0.
22、(4分)若关于 y 的一元二次方程 y2﹣4y+k+3=﹣2y+4 有实根,则 k 的取值范围是_____.
23、(4分)若﹣1的整数部分是a,小数部分是b,则代数式a2+2b的值是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
25、(10分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.
(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?
(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?
26、(12分)已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.
(1)求证:OE=OF;
(2)若AE=4,CF=3,求EF的长;
(3)若AB=8cm,请你计算四边形OEBF的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=,
∴PD+PA=PD+PC=CD=2.
∴PD+PA和的最小值是2.
故选A.
2、D
【解析】
3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.
【详解】
由题意,可知这位伟大的数学家是赵爽.
故选:D.
考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.
3、A
【解析】
根据平移的坐标变化规律,将A的横坐标+2即可得到A′的坐标.
【详解】
∵点A(1,2)向右平移2个单位得到对应点,
∴点的坐标为(1+2,2),即(3,2).
故选A.
本题考查图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移规律相同.
4、C
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
.解:.
故选:C.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
5、A
【解析】
根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.
【详解】
解:∵k=﹣1<0,
∴一次函数经过二、四象限;
∵b=﹣3<0,
∴一次函数又经过第三象限,
∴一次函数y=﹣x﹣3的图象不经过第一象限,
故选:A.
此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二、四象限,b<0,函数图象经过第三象限.
6、A
【解析】
根据菱形的判定方法即可解决问题;
【详解】
解:如图,∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∴当AC⊥BD时,四边形ABCD是菱形,
故选:A.
本题考查菱形的判定,解题的关键是熟练掌握类型的判定方法,属于中考常考题型.
7、C
【解析】
根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.
【详解】
解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,
由勾股定理得:AB==5,
∴正方形的面积=5×5=25,
∵△AEB的面积=AE×BE=×3×4=6,
∴阴影部分的面积=25-6=19,
故选:C.
本题考查了勾股定理,正方形的面积以及三角形的面积的求法,熟练掌握勾股定理是解题的关键.
8、D
【解析】
根据二次根式的运算法则逐项计算即可判断.
【详解】
解:A、和不是同类二次根式,不能合并,故错误;
B、=2,故错误;
C、=,故错误;
D、==2,故正确.
故选D.
本题考查了二次根式的四则运算.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据三角形中位线定理得到DE∥AB,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.
【详解】
解:、分别是、的中点,
,,,
,
平分,
,
,
,
,
故答案为.
本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.
10、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
11、10
【解析】
根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
【详解】
∵翻折,∴,,
又∵,
∴,
∴.设,则.
在中,,即,
解得,
∴,
∴.
此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
12、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
由“上加下减”的原则可知,将直线向上平移4个单位后所得的直线的解析式是+4,即.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
13、4
【解析】
把x=代入各函数求出对应的y值,即可求解.
【详解】
x=代入得
x=代入得
∴4
此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.
三、解答题(本大题共5个小题,共48分)
14、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
15、 (1)y=4x2+5x;(2)n=1.
【解析】
(1)先设出二次函数的解析式,然后将已知条件代入其中并解答即可;
(2)由抛物线的对称轴对称x1+x2=﹣,代入解析式即可求得n的值.
【详解】
解:(1)设二次函数的关系式为y=ax2+bx+c(a≠1),
∵二次函数的图象经过点(1,1),(﹣1,﹣1),(1,9)三点,
∴,解得,
所以二次函数的解析式是:y=4x2+5x;
(2)∵二次函数为y=4x2+5x,
∴对称轴为直线x=﹣=﹣,
∵三点(x1,21),(x2,21),(x1+x2,n)在该二次函数图象上,
∴=﹣,
∴x1+x2=﹣,
∴n=4×(﹣)2+5×(﹣)=1.
本题主要考查二次函数,掌握二次函数的图象和性质以及待定系数法是解题的关键.
16、(1)商场计划购进国外品牌手机20部,国内品牌手机30部;(2)当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
【解析】
(1)设商场计划购进甲种手机x部,乙种手机y部,根据两种手机的购买金额为14.8万元和两种手机的销售利润为2.7万元建立方程组求出其解即可;
(2)设甲种手机减少a部,则乙种手机增加3a部,表示出购买的总资金,由总资金部超过15.6万元建立不等式就可以求出a的取值范围,再设销售后的总利润为W元,表示出总利润与a的关系式,由一次函数的性质就可以求出最大利润.
【详解】
(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:
,
解得,
答:商场计划购进国外品牌手机20部,国内品牌手机30部;
(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:
0.44(20-a)+0.2(30+3a)≤15.6,
解得:a≤5,
设全部销售后获得的毛利润为w万元,由题意,得:
w=0.06(20-a)+0.05(30+3a)=0.09a+2.7,
∵k=0.09>0,
∴w随a的增大而增大,
∴当a=5时,w最大=3.15,
答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.
17、(1)证明见解析;(2)垂直平分.(3).
【解析】
(1)依据、是锐角的两条高,可得,,进而得出;
(2)连接、,根据直角三角形斜边上的中线等于斜边的一半可得,再根据等腰三角形三线合一的解答;
(3)求出、,然后利用勾股定理列式计算即可得解.
【详解】
解:(1)、是锐角的两条高,
,,
;
(2)垂直平分.
证明:如图,连接、,
、是锐角的两条高,是的中点,
,
是的中点,
垂直平分;
(3),,
,,
在Rt△EMN中,由勾股定理得,.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,勾股定理,熟记性质并作辅助线构造成等腰三角形是解题的关键.
18、(2)y=﹣2x+2;(2)m的值是或或2;(3)2.
【解析】
(2)设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;
(2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.
(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.
【详解】
(2) ∵A(2,0),B(0,2),
设直线AB的解析式是y=kx+b,
代入得:,
解得:k=﹣2,b=2,
∴直线AB的解析式是y=﹣2x+2.
(2)如图,分三种情况:
①如图①,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,
∵BM⊥BA,MN⊥y轴,OB⊥OA,
∴∠MBA=∠MNB=∠BOA=90°,
∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,
∴∠ABO=∠NMB,
在△BMN和△ABO中
,
∴△BMN≌△ABO(AAS),
MN=OB=2,BN=OA=2,
∴ON=2+2=6,
∴M的坐标为(2,6 ),
代入y=mx得:m=,
②如图②,当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,
易知△BOA≌△ANM(AAS),
同理求出M的坐标为(6,2),
代入y=mx得:m=,
③如图③,
当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,
∴四边形ONMH为矩形,
易知△BHM≌△AMN,
∴MN=MH,
设M(x2,x2)代入y=mx得:x2=m x2,
∴m=2,
答:m的值是或或2.
(3)如图3,设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,
HD交MP于D点,
即:∠MGA=∠DHA=900,连接ND,ND 交y轴于C点
由与x轴交于H点,∴H(2,0),
由与y=kx﹣2k交于M点,∴M(3,k),
而A(2,0),
∴A为HG的中点,AG=AH,∠MAG=∠DAH
∴△AMG≌△ADH(ASA),∴AM=AD
又因为N点的横坐标为﹣2,且在上,
∴N(-2,﹣k),同理D(2,﹣k)
∴N关于y轴对称点为D
∴PC是ND的垂直平分线∴PN=PD, CD=NC=HA=2,∠DCP=∠DHA=900,ND平行于X轴
∴∠CDP=∠HAD
∴△ADH≌△DPC ∴AD= PD
∴PN=PD=AD=AM,
∴.
此题是一次函数综合题,主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
原式化简后,合并即可得到结果.
【详解】
解:原式= ,
故答案为:.
此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.
20、3.
【解析】
运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.
【详解】
解:∵等腰直角三角形ABC,等腰直角三角形CDE
∴∠ECD=45°,∠ACB=45°
即AC⊥EC,且CE∥BF
当AG⊥BF,时AG最小,
所以由∵AF=AE
∴AG=CG=AC=3
故答案为3
本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.
21、1.
【解析】
直接利用分式的值为零则分子为零,分母不为零进而得出答案.
【详解】
解:∵分式的值为0,
∴1x-4=0且x-1≠0,
解得:x=1.
故答案为:1.
本题考查分式的值为零的条件,正确把握分式的定义是解题关键.
22、
【解析】
首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.
【详解】
解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,
再根据方程有实根可得:△=,则
,解得:;
∴则 k 的取值范围是:.
故答案为:.
本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
23、1+2
【解析】
先估算出的范围,再求出a,b的值,代入即可.
【详解】
解:∵16<23<25,
∴1<<5,
∴3<﹣1<1.
∴a=3,b=﹣1.
∴原式=32+2(﹣1)=9+2﹣8=1+2.
故答案为:1+2.
本题考查的是估算无理数的大小,熟练掌握无理数的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.
【解析】
分析: (1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.
(2)①可分别从平均数和方差两方面着手进行比较;
②可分别从平均数和中位数两方面着手进行比较;
③可从具有培养价值方面说明理由.
详解:
解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,
乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,
乙的中位数:(7+8)÷2=7.5,
填表如下:
(2)①从平均数和方差相结合看,甲的成绩好些;
②从平均数和中位数相结合看,乙的成绩好些;
③选乙参加.
理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.
故答案为:(1)1.2,7,7.5;(2)①甲;②乙.
点睛: 本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.
25、(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.
【解析】
(1)首先设甲种树购买了x棵,乙种数购买了y棵,由题意得等量关系:①进甲、乙两种树共50棵;②购买两种树总金额为56000元,根据等量关系列出方程组,再解即可;
(2)首先设应购买甲树x棵,则购买乙种树(50﹣a)棵,由题意得不等关系:购买甲树的金额≥购买乙树的金额,再列出不等式,求解即可.
【详解】
解:(1)设购买了甲树x棵、乙树y棵,根据题意得
解得:
答:购买了甲树10棵、乙树40棵;
(2)设应购买甲树a棵,根据题意得:
800a≥1200(50﹣a)
解得:a≥30
答:至少应购买甲树30棵.
此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程组和不等式.
26、(1)见解析;(2)EF=5;(3)16cm2
【解析】
(1)根据正方形的性质可得OB=OC,∠OBE=∠OCF=45°,再利用同角的余角相等得到∠BOE=∠COF,从而推出△OBE≌△OCF,即可得OE=OF;
(2)由(1)中的全等三角形可得BE=CF=3,由正方形的性质可知AB=BC,推出BF=AE=4,再根据勾股定理求出EF即可;
(3)由(1)中的全等三角形可将四边形OEBF的面积转化为△OBC的面积,等于正方形面积的四分之一.
【详解】
(1)∵四边形ABCD为正方形
∴OB=OC,∠OBE=∠OCF=45°,BD⊥AC
∴∠BOF+∠COF=90°,
∵OE⊥OF
∴∠BOF+∠BOE=90°
∴∠BOE=∠COF
在△OBE和△OCF中,
∵∠OBE=∠OCF,OB=OC,∠BOE=∠COF
∴△OBE≌△OCF(ASA)
∴OE=OF
(2)∵△OBE≌△OCF
∴BE=CF=3,
∵四边形ABCD为正方形
∴AB=BC
即AE+BE=BF+CF
∴BF=AE=4
∴EF=
(3)∵△OBE≌△OCF
∴S四边形OEBF=S△OBE+S△OBF
=S△OCF+ S△OBF
=S△BOC
=S正方形ABCD
=
=16cm2
本题考查正方形的性质,全等三角形的判定与性质以及勾股定理,熟练掌握正方形的性质得出全等三角形的条件是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
国外品牌
国内品牌
进价(万元/部)
0.44
0.2
售价(万元/部)
0.5
0.25
平均数
方差
中位数
甲
7
7
乙
5.4
平均数
方差
中位数
甲
7
1.2
7
乙
7
5.4
7.5
2024-2025学年贵州省贵阳市数学九上开学经典模拟试题【含答案】: 这是一份2024-2025学年贵州省贵阳市数学九上开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西省柳州市名校九上数学开学复习检测试题【含答案】: 这是一份2024-2025学年广西省柳州市名校九上数学开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广西龙胜县数学九上开学综合测试模拟试题【含答案】: 这是一份2024-2025学年广西龙胜县数学九上开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。