2024-2025学年广东省珠海市斗门中学九年级数学第一学期开学联考试题【含答案】
展开
这是一份2024-2025学年广东省珠海市斗门中学九年级数学第一学期开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程,配方正确的是()
A.B.C.D.
2、(4分)若=2﹣a,则a的取值范围是( )
A.a=2B.a>2C.a≥2D.a≤2
3、(4分)如图,在平面直角坐标系中,点是直线上一点,过作轴,交直线于点,过作轴,交直线于点,过作轴交直线于点 ,依次作下去,若点的纵坐标是1,则的纵坐标是( ).
A.B.C.D.
4、(4分)要使二次根式有意义,则的取值范围是( )
A.B.C.D.
5、(4分)不等式组的解集在数轴上表示为
A.B.
C.D.
6、(4分)下列说法错误的是( )
A.任意两个直角三角形一定相似
B.任意两个正方形一定相似
C.位似图形一定是相似图形
D.位似图形每一组对应点到位似中心的距离之比都等于位似比
7、(4分)要使分式有意义,则x的取值范围是( )
A.B.C.D.
8、(4分)在Rt△ABC中,∠C=90°.如果BC=3,AC=5,那么AB=( )
A.B.4C.4或D.以上都不对
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在△ABC中,点D,E分别是BC,AC的中点,AB=8,则DE的长为________.
10、(4分)使有意义的x取值范围是______.
11、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
12、(4分)如图,在平面直角坐标系中,点为第一象限内一点,且.连结,并以点为旋转中心把逆时针转90°后得线段.若点、恰好都在同一反比例函数的图象上,则的值等于________.
13、(4分)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在△ABD中,AB=AD,将△ABD沿BD对折,使点A翻折到点C,E是BD上一点。且BE>DE,连接AE并延长交CD于F,连接CE.
(1)依题意补全图形;
(2)判断∠AFD与∠BCE的大小关系并加以证明;
(3)若∠BAD=120°,过点A作∠FAG=60°交边BC于点G,若BG=m,DF=n,求AB的长度(用含m,n的代数式表示).
15、(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.
(1)求证:四边形AEDF是菱形;
(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.
16、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
17、(10分)已知是的函数,自变量的取值范围为,下表是与的几组对应值
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
18、(10分)(1)解不等式.
(2)解方程.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,直径,弦于,若,则____
20、(4分)已知:将直线y=x﹣1向上平移3个单位后得直线y=kx+b,则直线y=kx+b与x轴交点坐标为_____.
21、(4分)1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
22、(4分)如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .
23、(4分)正方形的边长为,则这个正方形的对角线长为_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)计算:;
(2)已知x=2−,求(7+4)x2+(2+)x+的值
25、(10分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?
(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?
26、(12分)解方程:
(1);
(2)甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.求甲、乙两公司各有多少人?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
把常数项-4移项后,应该在左右两边同时加上一次项系数-2的一半的平方.
【详解】
解:把方程x2-2x-4=0的常数项移到等号的右边,得到x2-2x=4,
方程两边同时加上一次项系数一半的平方,得到x2-2x+1=4+1,
配方得(x-1)2=1.
故选C.
本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
2、D
【解析】
根据二次根式有意义的条件分析可得解.
【详解】
∵=2-ɑ,
∴a-2≤0,
即a≤2,
故选D.
3、B
【解析】
由题意分别求出A1,A2,A3,A4的坐标,找出An的纵坐标的规律,即可求解.
【详解】
∵点B1的纵坐标是1,∴A1(,1),B1(,1).
∵过B1作B1A2∥y轴,交直线y=2x于点A2,过A2作AB2∥x轴交直线y于点B2…,依次作下去,∴A2(,),B2(1,),A3(1,2),B3(,2),A4(,2),…
可得An的纵坐标为()n﹣1,∴A2019的纵坐标是()2018=1.
故选B.
本题考查了一次函数图象上点的坐标特征、两直线平行或相交问题以及规律型中数字的变化类,找出An的纵坐标是解题的关键.
4、D
【解析】
根据二次根式有意义的条件进行求解即可.
【详解】
∵二次根式有意义
∴
解得
故答案为:D.
本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.
5、D
【解析】
分别求出不等式组中每一个不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
【详解】
:,
由得,,
由得,,
故此不等式组的解集为:,
在数轴上表示为:
故选D.
本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.在数轴上表示时要注意实心圆点与空心圆点的区别.
6、A
【解析】
根据相似图形的判定定理与相似三角形的判定定理,位似图形的性质,即可求得答案,注意举反例与排除法的应用.
【详解】
A. 任意两个直角三角形不一定相似,如等腰直角三角形与一般的直角三角形不相似,故本选项错误;
B. 任意两个正方形一定相似,故本选项正确;
C. 位似图形一定是相似图形,故本选项正确;
D. 位似图形每一组对应点到位似中心的距离之比都等于位似比,故本选项正确,
故选A.
本题考查相似图形的判定定理与相似三角形的判定定理,学生们熟练掌握定理即可.
7、A
【解析】
根据分式分母不为0的条件进行求解即可.
【详解】
由题意得
x-1≠0,
解得:x≠1,
故选A.
8、A
【解析】
解:∵∠C=90°,AC=5,BC=3,∴AB===.故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
【分析】根据三角形的中位线定理进行求解即可得.
【详解】∵D,E分别是BC,AC的中点,
∴DE是△ABC的中位线,
∴DE=AB==1,
故答案为:1.
【点睛】本题考查了三角形中位线定理,熟记定理的内容是解题的关键.
10、x≥1
【解析】
试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.
由题意得,.
考点:二次根式有意义的条件
点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.
11、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
12、
【解析】
分析: 过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对角相等,且AE=BD=b,OE=AD=a,进而表示出ED和OE+BD的长,即可表示出B坐标,由A与B都在反比例函数图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.
详解:过A作AE⊥x轴,过B作BD⊥AE,
∵∠OAB=90°,
∴∠OAE+∠BAD=90°,
∵∠AOE+∠OAE=90°,
∴∠BAD=∠AOE,
在△AOE和△BAD中,
∴△AOE≌△BAD(AAS),
∴AE=BD=b,OE=AD=a,
∴DE=AE-AD=b-a,OE+BD=a+b,
则B(a+b,b-a),
∵A与B都在反比例图象上,得到ab=(a+b)(b-a),整理得:b2-a2=ab,
即,
∵△=1+4=5,
∴,
∵点A(a,b)为第一象限内一点,
∴a>0,b>0,
则,
故答案为:.
点睛:本题主要考查反比例函数图象上点的坐标特征,解决本题的关键是构造全等三角形根据反比例函数上点的坐标特征列关系式.
13、①②⑤
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.⑤正确.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故答案为:①②⑤.
此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)∠BCE=∠AFD;(3)AB=m+n
【解析】
(1)将△ABD沿BD对折,使点A翻折到点C,在BD上取一点E,BE>DE,连接AE并延长交CD于F,连接CE.据此画图即可;
(2)先证出四边形ABCD是菱形,得∠BAF=∠AFD,再证出ΔABE≌ΔCBE,得到∠BCE=∠BAE.,所以∠BCE=∠AFD;
(3)由已知得出ΔACD是等边三角形,所以AD=AC, 再根据∠FAG=60°证出∠CAG=∠DAF,然后证明ΔACG≌ΔADF,得到CG=DF,从而得出AB=BC=m+n..
【详解】
(1)如图所示:
;
(2) ∠BCE=∠AFD,
理由:
由题意可知:∠ABD=∠CBD,AB=BC=AD=CD
∴四边形ABCD是菱形
∴∠BAF=∠AFD
在ΔABE和ΔCBE中
∴ΔABE≌ΔCBE(SAS)
∴∠BCE=∠BAE.
∴∠BCE=∠AFD.
(3)如图
∵四边形ABCD是菱形,∠BAD=120°,
∴∠CAD=∠CAB=60°
∴ΔACD是等边三角形
∴AD=AC
∵∠GAC+∠FAC=60°,且∠FAC+∠DAF=60°
∴∠CAG=∠DAF
在ΔACG和ΔADF中,
∴ΔACG≌ΔADF(ASA)
∴CG=DF
∵DF=n,BG=m
∴CG=n
∴BC=m+n
∴AB=BC=m+n.
本题考查了折叠问题,菱形的判定和性质以及全等三角形的判定和性质,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
15、(1)证明见解析;(2).
【解析】
试题分析:(1)利用直角三角形斜边中线是斜边一半,求得DE=AE=AF=DF,
所以AEDF是菱形.
(2)由(1)得,AEDF是菱形,求得菱形对角线乘积的一半,求面积 .
试题解析:
(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,点E、F分别是AB、AC的中点,
∴AE=AF,
∴AE=AF=DE=DF,
∴四边形AEDF是菱形.
(2)如图,∵菱形AEDF的周长为12,
∴AE=3,
设EF=x,AD=y,则x+y=7,
∴x2+2xy+y2=49,①
∵AD⊥EF于O,
∴Rt△AOE中,AO2+EO2=AE2,
∴(y)2+(x)2=32,
即x2+y2=36,②
把②代入①,可得2xy=13,
∴xy=,
∴菱形AEDF的面积S=xy= .
16、(1)1;(1)证明见解析;(3)≤OD≤1.
【解析】
(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;
(1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.
(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.
【详解】
解:∵直线AB的解析式为y=﹣1x+4,
∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,
(1)当点C与点O重合时如图所示,
∵DE垂直平分BC(BO),
∴DE是△BOA的中位线,
∴DE=OA=1;
故答案为:1;
(1)当CE∥OB时,如图所示:
∵DE为BC的中垂线,
∴BD=CD,EB=EC,
∴∠DBC=∠DCB,∠EBC=∠ECB,
∴∠DCE=∠DBE,
∵CE∥OB,
∴∠CEA=∠DBE,
∴∠CEA=∠DCE,
∴BE∥DC,
∴四边形BDCE为平行四边形,
又∵BD=CD,
∴四边形BDCE为菱形.
(3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;
当点C与点A重合时,OD取得最小值,如图所示:
在Rt△AOB中,AB==1,
∵DE垂直平分BC(BA),
∴BE=BA=,
易证△BDE∽△BAO,
∴,即,
解得:BD=,
则OD=OB﹣BD=4﹣=.
综上可得:≤OD≤1.
本题考查一次函数综合题.
17、 (1)见解析;(2)①(5,0);②见解析.
【解析】
(1)根据坐标,连接点即可得出函数图像;
(2)①根据图像,当x≥3时,根据两点坐标可得出函数解析式,进而可得出与轴的交点坐标;
②根据函数图像,相应的自变量的取值范围,可得出其性质.
【详解】
(1) 如图:
(2)①(5,0)
根据图像,当x≥3时,函数图像为一次函数,
设函数解析式为,将(3,4)和(4,2)两点代入,即得
解得
即函数解析式为
与x轴的交点坐标为(5,0);
②答案不唯一.如下几种答案供参考:
当0≤x≤3时,函数值y随x值增大而增大;
当x≥3时,函数值y随x值增大而减小;
当x=3时,函数有最大值为4;
该函数没有最小值.
此题主要考查利用函数图像获取信息,进行求解,熟练运用,即可解题.
18、
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1),
由①得:,
由②得:,
则不等式组的解集为;
(2)去分母得:,
解得:,
经检验是分式方程的解.
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据圆周角定理求出∠COB,根据正弦的概念求出CE,根据垂径定理解答即可.
【详解】
由圆周角定理得,∠COB=2∠A=60°,
∴CE=OC•sin∠COE=2×=,
∵AE⊥CD,
∴CD=2CE=2,
故答案为:2.
本题考查的是垂径定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.
20、(﹣4,0).
【解析】
根据平行直线的解析式的k值相等,向上平移3个单位,横坐标不变,纵坐标加3,写出平移后的解析式,然后令y=0,即可得解.
【详解】
∵直线y=x﹣1向上平移3个单位后得直线y=kx+b,
∴直线y=kx+b的解析式为:y=x+2,
令y=0,则0=x+2,
解得:x=﹣4,
∴直线y=kx+b与x轴的交点坐标为(﹣4,0).
故答案为:(﹣4,0).
本题主要考查直线平移的规律以及直线与x轴交点的坐标,掌握平行直线的解析式的k值相等,是解题的关键.
21、6174
【解析】
用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.
【详解】
解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,
用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,
用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,
用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,
用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,
用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…
可知7次变换之后,四位数最后都会停在一个确定的数6174上.
故答案为6174.
本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.
22、1.
【解析】
试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.
试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2
∴DE是△ABC的中位线,
∴BC=2DE=2×2=1.
考点:三角形中位线定理.
23、1
【解析】
如图(见解析),先根据正方形的性质可得,再利用勾股定理即可得.
【详解】
如图,四边形ABCD是边长为正方形
则
由勾股定理得:
即这个正方形的两条对角线相等,长为1
故答案为:1.
本题考查了正方形的性质、勾股定理,掌握理解正方形的性质是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)9-2;(2)2+
【解析】
(1)根据二次根式的运算法则即可求出答案.
(2)根据完全平方公式进行化简,然后将x的值代入即可求出答案.
【详解】
(1)原式=6+3−2+1−1
=9-2
(2)原式=(+2)2x2+(2+)x+
=(+2)2(2-)2+(2+)(2-)+
=(4-3)2+4-3+
=1+1+
=2+
本题考查学生的运算能力,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
25、(1)应表扬乙、丙两人;(2)应表扬甲、丙两人
【解析】
(1)把各科分数相加,再除以4,求出各自的平均数即可;
(2)按比例计算出平均分,再判断即可.
【详解】
解:(1)甲:(分);
乙:(分);
丙:(分),
应表扬乙、丙两人.
(2)折合后甲:(分);
折合后乙:(分);
折合后丙甲:(分),
应表扬甲、丙两人.
此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.
26、(1),;(2)甲公司有1名员工,乙公司有25名员工.
【解析】
(1)直接用配方法解一元二次方程即可;
(2)设乙公司有x人,则甲公司有1.2x人,根据人均捐款钱数=捐款总钱数÷人数,结合乙公司比甲公司人均多捐20元,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
解:(1),
,;
(2)解:设乙公司有x人,则甲公司有1.2x人,
依题意,得:,
解得:x=25,
经检验,x=25是原分式方程的解,且符合题意,
∴1.2x=1.
答:甲公司有1名员工,乙公司有25名员工.
本题考查了解一元二次方程和分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
0
1
2
3
3.5
4
4.5
…
1
2
3
4
3
2
1
…
语文
数学
英语
科学
甲
95
95
80
150
乙
105
90
90
139
丙
100
100
85
139
∠AOE=∠BAD,
∠AEO=∠BDA=90°
AO=BA
相关试卷
这是一份2024-2025学年广东省中学山市第一中学数学九年级第一学期开学联考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省珠海市斗门区2023-—2024学年上学期期末九年级数学试题,共4页。
这是一份2023-2024学年广东省珠海市斗门中学数学九年级第一学期期末统考试题含答案,共8页。试卷主要包含了平面直角坐标系内一点P等内容,欢迎下载使用。