还剩26页未读,
继续阅读
所属成套资源:新高考数学一轮复习考点过关练习 (含解析)
成套系列资料,整套一键下载
新高考数学一轮复习考点过关练习 点和椭圆的位置关系(含解析)
展开这是一份新高考数学一轮复习考点过关练习 点和椭圆的位置关系(含解析),共29页。
点P(x0,y0)和椭圆的位置关系有3种
(1)点P(x0,y0)在椭圆内⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)<1.(2)点P(x0,y0)在椭圆上⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)=1.(3)点P(x0,y0)在椭圆外⇔eq \f(x\\al(2,0),a2)+eq \f(y\\al(2,0),b2)>1.
【典例剖析】
典例1.点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,则a的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
典例2.若直线 SKIPIF 1 < 0 和圆 SKIPIF 1 < 0 没有公共点,则过点 SKIPIF 1 < 0 的直线与椭圆 SKIPIF 1 < 0 的交点个数是( )
A.0B.1C.2D.不确定
典例3.已知 SKIPIF 1 < 0 是椭圆 SKIPIF 1 < 0 上的动点, SKIPIF 1 < 0 是圆 SKIPIF 1 < 0 上的动点,则( )
A. SKIPIF 1 < 0 的焦距为 SKIPIF 1 < 0 B. SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0
C.圆 SKIPIF 1 < 0 在 SKIPIF 1 < 0 的内部D. SKIPIF 1 < 0 的长轴为 SKIPIF 1 < 0
【双基达标】
4.已知F是椭圆 SKIPIF 1 < 0 的左焦点,P为椭圆C上任意一点,点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0 SKIPIF 1 < 0
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.已知点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,则直线 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 的位置关系为
A.相离B.相交C.相切D.相交或相切
6.设 SKIPIF 1 < 0 分别为圆 SKIPIF 1 < 0 和椭圆 SKIPIF 1 < 0 上的点,则 SKIPIF 1 < 0 两点间的最大距离是
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
7.已知椭圆C: SKIPIF 1 < 0 的右焦点为F,点A(−2,2)为椭圆C内一点.若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的取值范围是
A. SKIPIF 1 < 0 B.[9,25]
C. SKIPIF 1 < 0 D.[3,5]
8.函数 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 )的图象恒过定点 SKIPIF 1 < 0 ,若点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 )上,则 SKIPIF 1 < 0 的最小值为( )
A.12B.14C.16D.18
9.点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
10.已知 SKIPIF 1 < 0 为椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 的右焦点,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为椭圆 SKIPIF 1 < 0 上三点,当 SKIPIF 1 < 0 时,称 SKIPIF 1 < 0 为“和谐三角形”,则“和谐三角形”有( )
A.0个B.1个C.3个D.无数个
11.点 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 的位置关系为( )
A.在椭圆上B.在椭圆内C.在椭圆外D.不能确定
12.已知F1,F2分别为椭圆C: SKIPIF 1 < 0 的左,右焦点,点P为椭圆C上的动点,则△PF1F2的重心G的轨迹方程为( )
A. SKIPIF 1 < 0 (y≠0)B. SKIPIF 1 < 0 +y2=1(y≠0)
C. SKIPIF 1 < 0 +3y2=1(y≠0)D.x2+ SKIPIF 1 < 0 =1(y≠0)
13.已知椭圆 SKIPIF 1 < 0 的焦点分别是 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点M在该椭圆上,如果 SKIPIF 1 < 0 ,那么点M到y轴的距离是 SKIPIF 1 < 0 SKIPIF 1 < 0
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
14.已知函数 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 )的图象恒过定点 SKIPIF 1 < 0 ,若点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,则 SKIPIF 1 < 0 的最小值为( )
A.12B.10C.8D.9
15.点 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 的位置关系为( )
A.在椭圆内B.在椭圆上C.在椭圆外D.不能确定
【高分突破】
单选题
16.已知椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 的长轴顶点为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 是椭圆 SKIPIF 1 < 0 上除 SKIPIF 1 < 0 、 SKIPIF 1 < 0 外任意一点,直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴上的截距分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ( )
A.3B.4C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
17.点P(4csα,2 SKIPIF 1 < 0 sinα)(α∈R)与椭圆C: SKIPIF 1 < 0 + SKIPIF 1 < 0 =1的位置关系是( )
A.点P在椭圆C上B.点P与椭圆C的位置关系不能确定,与α的取值有关
C.点P在椭圆C内D.点P在椭圆C外
18.已知椭圆 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
19.已知椭圆 SKIPIF 1 < 0 上一点 SKIPIF 1 < 0 和该椭圆上两动点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的斜率分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则直线 SKIPIF 1 < 0 的斜率 SKIPIF 1 < 0
A. SKIPIF 1 < 0 或 SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0 的值不确定
20.已知椭圆 SKIPIF 1 < 0 经过圆 SKIPIF 1 < 0 的圆心,则 SKIPIF 1 < 0 的取值范围是
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
21.已知椭圆 SKIPIF 1 < 0 左、右焦点分别为 SKIPIF 1 < 0 .若椭圆 SKIPIF 1 < 0 上存在四个不同的点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
22.若点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,则 SKIPIF 1 < 0 的取值范围为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
23.下面是对曲线 SKIPIF 1 < 0 的一些结论,正确的结论是( )
① SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 ;
②曲线 SKIPIF 1 < 0 是中心对称图形;
③曲线 SKIPIF 1 < 0 上除点 SKIPIF 1 < 0 , SKIPIF 1 < 0 外的其余所有点都在椭圆 SKIPIF 1 < 0 的内部;
④过曲线 SKIPIF 1 < 0 上任一点作 SKIPIF 1 < 0 轴的垂线,垂线段中点的轨迹所围成图形的面积不大于 SKIPIF 1 < 0 ;
A.①②④B.②③④C.①②D.①③④
24.点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,则 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
25.已知点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,则直线 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 的位置关系为( )
A.相交B.相切
C.相离D.相交或相切
26.点 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 上,若椭圆 SKIPIF 1 < 0 上存在两点 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 是等腰三角形,则称椭圆 SKIPIF 1 < 0 具有性质 SKIPIF 1 < 0 .下列结论中正确的是( )
A.对于直线 SKIPIF 1 < 0 上的所有点,椭圆 SKIPIF 1 < 0 都不具有性质 SKIPIF 1 < 0
B.直线 SKIPIF 1 < 0 上仅有有限个点,使椭圆 SKIPIF 1 < 0 具有性质 SKIPIF 1 < 0
C.直线 SKIPIF 1 < 0 上有无穷多个点(但不是所有的点),使椭圆 SKIPIF 1 < 0 具有性质 SKIPIF 1 < 0
D.对于直线 SKIPIF 1 < 0 上的所有点,椭圆 SKIPIF 1 < 0 都具有性质 SKIPIF 1 < 0
27.已知 SKIPIF 1 < 0 为椭圆 SKIPIF 1 < 0 上一点, SKIPIF 1 < 0 为椭圆长轴上一点, SKIPIF 1 < 0 为坐标原点,有下列结论:①存在点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 为等边三角形;②不存在点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 为等边三角形;③存在点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ;④不存在点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 .其中,所有正确结论的序号是
A.①④B.①③C.②④D.②③
28.已知椭圆C: SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 ,则点A与椭圆C的位置关系是( ).
A.点A在椭圆C上B.点A在椭圆C内C.点A在椭圆C外D.无法判断
29.若点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,则实数 SKIPIF 1 < 0 的取值范围是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
二、多选题
30.已知椭圆 SKIPIF 1 < 0 的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论正确的有( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
31.已知函数 SKIPIF 1 < 0 ,则下列说法正确的是( )
A.函数 SKIPIF 1 < 0 为周期函数B.函数 SKIPIF 1 < 0 为偶函数
C.若该函数有且仅有2个零点,则 SKIPIF 1 < 0 D. SKIPIF 1 < 0 的最小值与 SKIPIF 1 < 0 有关
32.(多选)已知椭圆 SKIPIF 1 < 0 的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论正确的有( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
33.已知椭圆 SKIPIF 1 < 0 的焦点为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,则( )
A. SKIPIF 1 < 0 B.椭圆 SKIPIF 1 < 0 的离心率的取值范围为 SKIPIF 1 < 0
C.存在点 SKIPIF 1 < 0 使得 SKIPIF 1 < 0 D. SKIPIF 1 < 0
34.已知椭圆 SKIPIF 1 < 0 的焦点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,焦距为2c,过 SKIPIF 1 < 0 的直线与椭圆C交于A,B两点. SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 的周长为20,则经过点 SKIPIF 1 < 0 的直线( )
A.与椭圆C可能相交B.与椭圆C可能相切
C.与椭圆C可能相离D.与椭圆C不可能相切
35.已知椭圆 SKIPIF 1 < 0 的左右焦点分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,长轴长为4,点 SKIPIF 1 < 0 在椭圆内部,点Q在椭圆上,则以下说法正确的是( )
A. SKIPIF 1 < 0 B.当离心率为 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0
C.椭圆C离心率的取值范围为 SKIPIF 1 < 0 D.存在点Q使得 SKIPIF 1 < 0
三、填空题
36.如图,P为椭圆 SKIPIF 1 < 0 上的一动点,过点P作椭圆 SKIPIF 1 < 0 的两条切线PA、PB,斜率分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 为定值,则 SKIPIF 1 < 0 __________
37.已知点P(k,1),椭圆 SKIPIF 1 < 0 =1,点P在椭圆外,则实数k的取值范围为_____.
38.若点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,则实数 SKIPIF 1 < 0 的取值范围是______.
39.已知圆 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),点 SKIPIF 1 < 0 是该椭圆面(包括椭圆及内部)上任意一点,则 SKIPIF 1 < 0 的最小值等于________.
40.若直线 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 没有交点,则过点 SKIPIF 1 < 0 的直线与椭圆 SKIPIF 1 < 0 的交点个数是________.
41.已知椭圆 SKIPIF 1 < 0 的弦被点 SKIPIF 1 < 0 平分,则这条弦所在的直线方程为______.
四、解答题
42.如图,已知椭圆 SKIPIF 1 < 0 的顶点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 分别为矩形 SKIPIF 1 < 0 的边 SKIPIF 1 < 0 的中点,点 SKIPIF 1 < 0 分别满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 的交点为 SKIPIF 1 < 0 .
(1)证明:点P在椭圆E上;
(2)设直线l与椭圆E相交于M,N两点, SKIPIF 1 < 0 内切圆的圆心为 SKIPIF 1 < 0 .若直线 SKIPIF 1 < 0 垂直于x轴,证明直线l的斜率为定值,并求出该定值.
43.在平面直角坐标系 SKIPIF 1 < 0 中,设椭圆 SKIPIF 1 < 0 ( SKIPIF 1 < 0 )的离心率是e,定义直线 SKIPIF 1 < 0 为椭圆的“类准线”,已知椭圆C的“类准线”方程为 SKIPIF 1 < 0 ,长轴长为4.
(1)求椭圆C的方程;
(2)点P在椭圆C的“类准线”上(但不在y轴上),过点P作圆O: SKIPIF 1 < 0 的切线l,过点O且垂直于 SKIPIF 1 < 0 的直线l交于点A,问点A是否在椭圆C上?证明你的结论.
44.已知 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,且与 SKIPIF 1 < 0 : SKIPIF 1 < 0 内切,设 SKIPIF 1 < 0 的圆心 SKIPIF 1 < 0 的轨迹为曲线 SKIPIF 1 < 0 .
(1)求曲线 SKIPIF 1 < 0 的方程;
(2)若 SKIPIF 1 < 0 轴上有两点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),点 SKIPIF 1 < 0 在曲线 SKIPIF 1 < 0 上(不在 SKIPIF 1 < 0 轴上),直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 的斜率分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别与直线 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 , SKIPIF 1 < 0 两点.若 SKIPIF 1 < 0 是定值,求 SKIPIF 1 < 0 的值,并求出此时 SKIPIF 1 < 0 的最小值.
45.平面直角坐标系 SKIPIF 1 < 0 中,已知椭圆 SKIPIF 1 < 0 的离心率为 SKIPIF 1 < 0 ,左、右焦点分别是 SKIPIF 1 < 0 .以 SKIPIF 1 < 0 为圆心以3为半径的圆与以 SKIPIF 1 < 0 为圆心以1为半径的圆相交,且交点在椭圆 SKIPIF 1 < 0 上.
(1)求椭圆 SKIPIF 1 < 0 的方程;
(2)设椭圆 SKIPIF 1 < 0 ,P为椭圆 SKIPIF 1 < 0 上任意一点,过点 SKIPIF 1 < 0 的直线 SKIPIF 1 < 0 交椭圆 SKIPIF 1 < 0 于 SKIPIF 1 < 0 两点,射线 SKIPIF 1 < 0 交椭圆 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .求 SKIPIF 1 < 0 的值;
46.已知 SKIPIF 1 < 0 的长轴长为4,短轴长为2.
(1)求椭圆C的标准方程;
(2)点A,B分别为椭圆C的左、右顶点,点P为椭圆C上的动点(异于A,B两点),过原点O作直线PB的垂线,垂足为H,直线OH与直线AP相交于点M,证明:点M的横坐标为定值.
47.矩形的中心在坐标原点,边与轴平行,=8,=6.分别是矩形四条边的中点,是线段的四等分点,是线段的四等分点.设直线与,与,与的交点依次为.
(1)以为长轴,以为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的(等分点从左向右依次为,线段的等分点从上向下依次为,那么直线与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
参考答案
1.B
【分析】根据点在椭圆外部得不等式,解不等式得结果.
【详解】因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,
所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
故选:B.
2.C
【分析】通过直线与圆、圆与椭圆的位置关系可得点 SKIPIF 1 < 0 在椭圆内,进而可得结论.
【详解】因为直线 SKIPIF 1 < 0 和圆 SKIPIF 1 < 0 没有交点,
所以圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离 SKIPIF 1 < 0 ,
可得: SKIPIF 1 < 0 ,
即点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 内,
又因为圆 SKIPIF 1 < 0 内切于椭圆 SKIPIF 1 < 0 ,
所以点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 内,
即过点 SKIPIF 1 < 0 的直线与椭圆 SKIPIF 1 < 0 有两个交点.
故选:C.
3.C
【分析】求出 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的值,可判断AD选项的正误;利用椭圆的有界性可判断BC选项的正误.
【详解】在椭圆 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
对于A选项,椭圆 SKIPIF 1 < 0 的焦距为 SKIPIF 1 < 0 ,A错;
对于B选项,设点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,B错;
对于C选项,在圆 SKIPIF 1 < 0 上任取一点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以,圆 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 内,C对;
对于D选项,椭圆 SKIPIF 1 < 0 的长轴长为 SKIPIF 1 < 0 ,D错.
故选:C.
4.A
【分析】由题意,设椭圆C的右焦点为 SKIPIF 1 < 0 ,由已知条件推导出 SKIPIF 1 < 0 ,利用Q, SKIPIF 1 < 0 ,P共线,可得 SKIPIF 1 < 0 取最大值.
【详解】由题意,点F为椭圆 SKIPIF 1 < 0 的左焦点, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点P为椭圆C上任意一点,点Q的坐标为 SKIPIF 1 < 0 ,
设椭圆C的右焦点为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,即最大值为5 SKIPIF 1 < 0 ,此时Q, SKIPIF 1 < 0 ,P共线,故选A.
【点睛】本题主要考查了椭圆的标准方程、定义及其简单的几何性质的应用,其中解答中熟记椭圆的标准方程、定义和简单的几何性质,合理应用是解答的关键,着重考查了转化思想以及推理与运算能力.
5.B
【分析】先根据点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,求出 SKIPIF 1 < 0 的范围,求出圆心到直线的距离,再利用几何法判断直线与圆的位置关系即可.
【详解】因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
则圆 SKIPIF 1 < 0 的圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离
SKIPIF 1 < 0 ,
所以直线 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 相交
故选:B
【点睛】本题考查了点与椭圆的位置关系及利用几何法判断直线与圆的位置关系,属于一般题.
6.A
【详解】先求圆心(0,6)与椭圆上任意一点(x,y)之间的距离
SKIPIF 1 < 0 = SKIPIF 1 < 0 = SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取得最大值为 SKIPIF 1 < 0 ,
又因为圆 SKIPIF 1 < 0 的半径为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 两点间的最大距离是 SKIPIF 1 < 0 .
故选A.
7.A
【分析】设椭圆的左焦点为F'(﹣2,0),由椭圆的定义可得2 SKIPIF 1 < 0 =|PF|+|PF'|,即|PF'|=2 SKIPIF 1 < 0 ﹣|PF|,可得|PA|﹣|PF'|=8﹣2 SKIPIF 1 < 0 ,运用三点共线取得最值,解不等式可得m的范围,再由点在椭圆内部,可得所求范围.
【详解】椭圆C: SKIPIF 1 < 0 的右焦点F(2,0),
左焦点为F'(﹣2,0),
由椭圆的定义可得2 SKIPIF 1 < 0 =|PF|+|PF'|,
即|PF'|=2 SKIPIF 1 < 0 ﹣|PF|,
可得|PA|﹣|PF'|=8﹣2 SKIPIF 1 < 0 ,
由||PA|﹣|PF'||≤|AF'|=2,
可得﹣2≤8﹣2 SKIPIF 1 < 0 ≤2,
解得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,①
又A在椭圆内,
所以 SKIPIF 1 < 0 ,所以8m-16
故选A.
【点睛】本题考查椭圆的定义和性质的运用,考查转化思想和运算能力,属于中档题.
8.C
【分析】求出 SKIPIF 1 < 0 的坐标代入椭圆方程,再将 SKIPIF 1 < 0 化为积为定值的形式,利用基本不等式可求得结果.
【详解】由 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上,所以 SKIPIF 1 < 0 ( SKIPIF 1 < 0 , SKIPIF 1 < 0 ),
所以 SKIPIF 1 < 0 ,
当且仅当 SKIPIF 1 < 0 时,等号成立.
故选:C
【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:
(1)“一正二定三相等”“一正”就是各项必须为正数;
(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.
9.B
【分析】由题意可得 SKIPIF 1 < 0 ,解不等式即可得解.
【详解】因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,所以有 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 .
故选:B.
【点睛】本题考查点与椭圆的位置关系,侧重考查对基础知识的理解和掌握,属于常考题.
10.D
【分析】根据 SKIPIF 1 < 0 得到 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的重心,设 SKIPIF 1 < 0 ,则得到 SKIPIF 1 < 0 边中点 SKIPIF 1 < 0 的坐标,要求 SKIPIF 1 < 0 在椭圆内,且为 SKIPIF 1 < 0 弦中点,即存在满足要求的“和谐三角形”,从而得到答案.
【详解】因为 SKIPIF 1 < 0 为椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 的右焦点,
所以 SKIPIF 1 < 0
因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的重心,
设边 SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
设 SKIPIF 1 < 0 , SKIPIF 1 < 0
所以 SKIPIF 1 < 0
将 SKIPIF 1 < 0 , SKIPIF 1 < 0 代入椭圆方程得 SKIPIF 1 < 0
两式相减,得到 SKIPIF 1 < 0
整理得到 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 方程为 SKIPIF 1 < 0
当 SKIPIF 1 < 0 在椭圆内时,
得 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0
所以得到 SKIPIF 1 < 0
所以当 SKIPIF 1 < 0 时,
直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 : SKIPIF 1 < 0 一定有两个交点 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ,
满足 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的重心,即满足 SKIPIF 1 < 0 ,
使得 SKIPIF 1 < 0 为“和谐三角形”,
因此满足要求的情况有无数种,所以“和谐三角形”有无数个.
故选:D.
【点睛】本题考查三角形重心的性质,点差法求弦中点所在的直线,点与椭圆的位置关系,属于中档题.
11.B
【解析】将点的坐标代入椭圆方程,根据不等关系可判断出点与椭圆的位置关系.
【详解】 SKIPIF 1 < 0 ,可知点 SKIPIF 1 < 0 在椭圆内.
【分析】故选:B.
12.C
【解析】设P(x0,y0),G(x,y),利用三角形的重心的坐标公式可得 SKIPIF 1 < 0 ,将其代入 SKIPIF 1 < 0 可得结果.
【详解】依题意知F1(-1,0),F2(1,0),设P(x0,y0),G(x,y),
则由三角形重心坐标公式可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,将其代入 SKIPIF 1 < 0 得重心G的轨迹方程为 SKIPIF 1 < 0 +3y2=1(y≠0).
故选:C
【点睛】本题考查了三角形的重心的坐标公式,考查了用代入法求动点的轨迹方程,属于基础题.
13.B
【分析】设M(x,y),则椭圆 SKIPIF 1 < 0 …①, SKIPIF 1 < 0 ,可得x2+y2=3…②,由①②可求解.
【详解】设M(x,y),则椭圆 SKIPIF 1 < 0 …①,
∵椭圆 SKIPIF 1 < 0 的焦点分别是 SKIPIF 1 < 0
∵ SKIPIF 1 < 0 SKIPIF 1 < 0 ,∴x2+y2=3…②
由①②得 SKIPIF 1 < 0 ,
∴点M到y轴的距离为 SKIPIF 1 < 0 ,故选B.
【点睛】本题考查了椭圆的方程及向量运算,属于中档题.
14.D
【分析】由题知 SKIPIF 1 < 0 ,进而得 SKIPIF 1 < 0 且 SKIPIF 1 < 0 ,再结合基本不等式”1”的用法求解即可.
【详解】由于函数 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 )向右平移两个单位得: SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ),即为函数 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ),所以定点 SKIPIF 1 < 0 ,
由于点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,
当且仅当 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 时取等号.
故选:D
【点睛】本题考查指数函数过定点问题,基本不等式求最值等,考查运算求解能力,中档题.本题解题的关键在于将函数 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 )变形为 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ),再根据函数平移变换即可得 SKIPIF 1 < 0 .
15.A
【分析】将点 SKIPIF 1 < 0 的坐标代入椭圆方程,根据不等关系可判断出点 SKIPIF 1 < 0 与椭圆的位置关系.
【详解】 SKIPIF 1 < 0 ,所以,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 内.
故选:A.
【点睛】本题考查点与椭圆位置关系的判断,考查推理能力与计算能力,属于基础题.
16.A
【分析】先设椭圆上点 SKIPIF 1 < 0 ,写出 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,求直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的方程,再表示出 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即得结果.
【详解】椭圆上 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,设点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
直线 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
直线 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 .
故选:A.
17.D
【解析】将P的坐标代入到椭圆方程的左边,结合同角三角函数的基本关系即可判断点和椭圆的位置关系.
【详解】把点P(2csα, SKIPIF 1 < 0 sinα)(α∈R)代入椭圆方程的左边为 SKIPIF 1 < 0 + SKIPIF 1 < 0
=4(cs2α+sin2α)=4>1,因此点P在椭圆外.
故选:D.
18.D
【分析】将点 SKIPIF 1 < 0 代入 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,代入到 SKIPIF 1 < 0 ,根据椭圆的范围进行求解.
【详解】因为椭圆 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 .
因为椭圆 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 .
故选:D.
【点睛】本题主要考查椭圆的简单几何性质的应用,属于基础题.
19.C
【分析】根据题意,可以判断点 SKIPIF 1 < 0 在椭圆上, SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 、 SKIPIF 1 < 0 方程分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,分别将直线方程与椭圆方程联立,得到点 SKIPIF 1 < 0 、点 SKIPIF 1 < 0 坐标,根据斜率公式计算即可.
【详解】由 SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0
易知,点 SKIPIF 1 < 0 在椭圆上,联立直线 SKIPIF 1 < 0 与椭圆方程得, SKIPIF 1 < 0 ,由韦达定理得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,代入直线 SKIPIF 1 < 0 中得到 SKIPIF 1 < 0 ,即点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ;同理可得,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 ,
则直线 SKIPIF 1 < 0 的斜率为 SKIPIF 1 < 0 ,故选C
【点睛】本题考查点与椭圆的位置关系,直线的斜率,直线与椭圆的关系,解题关键在于发现已知点所在位置这个隐藏条件,联立方程后即可得到所求点的表示情况.
20.B
【详解】 SKIPIF 1 < 0 即为 SKIPIF 1 < 0 ,圆心为(2,1),
∵ SKIPIF 1 < 0 经过圆 SKIPIF 1 < 0 的圆心, SKIPIF 1 < 0 .
当且仅当 SKIPIF 1 < 0 时等号成立.
据此可得: SKIPIF 1 < 0 的取值范围是 SKIPIF 1 < 0 .
本题选择B选项.
21.B
【分析】根据题意,由椭圆的性质分析可得,若椭圆 SKIPIF 1 < 0 上存在四个不同点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 的面积.推出 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,然后求解 SKIPIF 1 < 0 的范围即可.
【详解】由题得 SKIPIF 1 < 0 ,因为椭圆 SKIPIF 1 < 0 上存在四个不同的点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 .
故选: SKIPIF 1 < 0 .
【点睛】本题考查椭圆的几何性质,椭圆中的三角形问题,难度一般.
22.B
【解析】根据题中条件,得到 SKIPIF 1 < 0 ,求解,即可得出结果.
【详解】因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
故选:B.
23.C
【解析】由曲线方程性质可知①正确;关于原点对称的两个点 SKIPIF 1 < 0 点 SKIPIF 1 < 0 ,是否都在曲线上,可判断②;令 SKIPIF 1 < 0 代入 SKIPIF 1 < 0 验证即可判断③;通过轨迹法求得垂线段中点的轨迹方程,判断轨迹中的点 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的关系即可判断④.
【详解】 SKIPIF 1 < 0 ,可知 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,①正确;
将方程中的 SKIPIF 1 < 0 换成 SKIPIF 1 < 0 , SKIPIF 1 < 0 换成 SKIPIF 1 < 0 方程不变,故②正确;
SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的外部,故③错误;
过曲线 SKIPIF 1 < 0 上任一点作 SKIPIF 1 < 0 轴的垂线,垂线段中点的轨迹为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
在 SKIPIF 1 < 0 上任取一点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 在 SKIPIF 1 < 0 外,
SKIPIF 1 < 0 围成图形的面积大于 SKIPIF 1 < 0 ,故④错误.
故选:C
【点睛】方法点睛:关于对称点的问题可以利用以下知识解决:
①点 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 轴对称的点为 SKIPIF 1 < 0 ;
②点 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 轴对称的点为 SKIPIF 1 < 0 ;
③点 SKIPIF 1 < 0 关于原点对称的点为 SKIPIF 1 < 0 ;
④点 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 轴对称的点为 SKIPIF 1 < 0 .
24.A
【分析】根据点在椭圆内部得不等式,解不等式得结果.
【详解】因为点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,选A.
【点睛】本题考查点与椭圆位置关系,考查基本分析求解能力.属基础题.
25.D
【分析】由点 SKIPIF 1 < 0 在椭圆上的m,n的关系,代入圆心到直线的距离的解析式中,可求得d SKIPIF 1 < 0 ,即可判断直线与圆的位置关系.
【详解】∵点 SKIPIF 1 < 0 在椭圆上,∴ SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
∵圆心(0,0)到直线 SKIPIF 1 < 0 的距离:
SKIPIF 1 < 0
又圆的半径 SKIPIF 1 < 0
∴直线 SKIPIF 1 < 0 与圆 SKIPIF 1 < 0 相交或相切.
答案:D
【点睛】本题考查了椭圆的简单性质,考查了直线与圆的位置关系, 点到直线的距离公式, 考查了转化思想.难度一般.
26.D
【解析】以点 SKIPIF 1 < 0 为圆心作圆 SKIPIF 1 < 0 ,则通过改变圆的半径大小,使得圆 SKIPIF 1 < 0 与椭圆相交于两点 SKIPIF 1 < 0 ,这样 SKIPIF 1 < 0 ,于是 SKIPIF 1 < 0 是等腰三角形,即可知结论正确的是D.
【详解】取直线 SKIPIF 1 < 0 上的任意点 SKIPIF 1 < 0 ,以点 SKIPIF 1 < 0 为圆心作圆 SKIPIF 1 < 0 ,通过改变圆的半径大小,使得圆 SKIPIF 1 < 0 与椭圆相交于两点 SKIPIF 1 < 0 ,这样 SKIPIF 1 < 0 ,于是 SKIPIF 1 < 0 是等腰三角形,所以对于直线 SKIPIF 1 < 0 上的所有点,椭圆 SKIPIF 1 < 0 都具有性质 SKIPIF 1 < 0 .
故选:D.
27.A
【分析】利用椭圆的简单几何性质,直接可判断①正确②错误,分情况讨论点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的位置,利用余弦定理判断 SKIPIF 1 < 0 ,即可确定③错误④正确.
【详解】过原点且倾斜角为 SKIPIF 1 < 0 的直线一定与椭圆有交点,假设 SKIPIF 1 < 0 轴右侧的交点
是 SKIPIF 1 < 0 ,在长轴上取 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 就是等边三角形
故①正确,②错误
若点 SKIPIF 1 < 0 和点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴两侧,则 SKIPIF 1 < 0 一定是锐角
若点 SKIPIF 1 < 0 和点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴同侧,不妨设为在 SKIPIF 1 < 0 轴右侧
设点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0
由椭圆性质可知,当点 SKIPIF 1 < 0 是长轴端点时, SKIPIF 1 < 0 最大
因为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0
所以 SKIPIF 1 < 0
SKIPIF 1 < 0
所以 SKIPIF 1 < 0
即 SKIPIF 1 < 0 ,故③错误,④正确
故选:A
【点睛】1.本题考查的是椭圆性质的应用,椭圆关于原点、 SKIPIF 1 < 0 轴、 SKIPIF 1 < 0 轴对称.
2.可以用余弦定理判断一个角是锐角、直角还是钝角.
28.B
【分析】当 SKIPIF 1 < 0 时,代入椭圆得到 SKIPIF 1 < 0 ,确定范围得到答案.
【详解】当 SKIPIF 1 < 0 时,代入椭圆得到 SKIPIF 1 < 0 , SKIPIF 1 < 0
故点 SKIPIF 1 < 0 在椭圆内
故选B
【点睛】本题考查了点与椭圆的关系,意在考查学生的计算能力.
29.B
【解析】根据点与椭圆的位置关系即可求解.
【详解】解: SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
故选:B.
【点睛】考查已知点与圆的位置关系求参数的取值范围,基础题.
30.AD
【分析】根据轨迹是以斜边为直径的圆,判断在椭圆内或椭圆外即可.
【详解】由题意可得,椭圆的焦点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以点M在以 SKIPIF 1 < 0 为直径的圆上,则短半轴长为 SKIPIF 1 < 0 ,所以点M在椭圆 SKIPIF 1 < 0 内,故A正确;
由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,则该椭圆的长半轴长为 SKIPIF 1 < 0 ,所以点M在椭圆 SKIPIF 1 < 0 外,故D正确.
故选:AD
31.BC
【分析】由 SKIPIF 1 < 0 的性质和图象可判断A;利用奇偶性定义可判断B;令 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 可判断C;由函数 SKIPIF 1 < 0 的图象和性质可判断D.
【详解】对于A,由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
此时函数 SKIPIF 1 < 0 的图象为焦点在 SKIPIF 1 < 0 轴对称轴为坐标轴的椭圆的上半部分,没有周期,
由 SKIPIF 1 < 0 知,
此时函数的图象为三角函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 的部分,
可知函数 SKIPIF 1 < 0 不是周期函数,故A错误;
对于B, SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以函数 SKIPIF 1 < 0 为偶函数,故B正确;
对于C,令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,所以若该函数有且仅有2个零点,则 SKIPIF 1 < 0 ,故C正确;
对于D,由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
此时函数 SKIPIF 1 < 0 的图象为焦点在 SKIPIF 1 < 0 轴,对称轴为坐标轴的椭圆的上半部分,椭圆的右焦点为 SKIPIF 1 < 0 ,由椭圆性质知 SKIPIF 1 < 0 到焦点的距离最小时即为右顶点 SKIPIF 1 < 0 ,此时最小值为 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的点到 SKIPIF 1 < 0 的距离的平方大于 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 的最小值与 SKIPIF 1 < 0 无关,故D错误.
故选:BC.
32.ACD
【分析】由椭圆 SKIPIF 1 < 0 ,可得:左、右焦点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 .由 SKIPIF 1 < 0 ,可得直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 交点 SKIPIF 1 < 0 在椭圆的内部.进而判断出A正确;B不正确;C直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 联立,可得直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 无交点.而点 SKIPIF 1 < 0 在椭圆的内部,在直线的左下方,即可判断出正误. D根据 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,代入化简即可判断出正误.
【详解】解:由椭圆 SKIPIF 1 < 0 ,可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
SKIPIF 1 < 0 左、右焦点分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
SKIPIF 1 < 0 , SKIPIF 1 < 0 直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 交点 SKIPIF 1 < 0 在椭圆的内部.
SKIPIF 1 < 0 SKIPIF 1 < 0 ,A正确;
SKIPIF 1 < 0 ,B不正确;
直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 联立,可得: SKIPIF 1 < 0 无解,
因此直线 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 无交点.
而点 SKIPIF 1 < 0 在椭圆的内部,在直线的左下方, SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,C正确.
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,因此D正确.
故选:ACD.
33.ACD
【分析】利用点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部可求得 SKIPIF 1 < 0 的取值范围,可判断A选项;利用椭圆的离心率公式可判断B选项;求出点 SKIPIF 1 < 0 的轨迹方程,判断点 SKIPIF 1 < 0 的轨迹与椭圆的公共点,可判断C选项;利用两点间的距离公式可判断D选项.
【详解】对于A选项,由已知可得 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,A对;
对于B选项,椭圆 SKIPIF 1 < 0 的离心率为 SKIPIF 1 < 0 ,B错;
对于C选项,设 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为椭圆 SKIPIF 1 < 0 的左、右焦点,则 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,
记 SKIPIF 1 < 0 ,设点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
所以,点 SKIPIF 1 < 0 在圆 SKIPIF 1 < 0 上,联立 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,
即圆 SKIPIF 1 < 0 与椭圆 SKIPIF 1 < 0 有公共点,C对;
对于D选项, SKIPIF 1 < 0
SKIPIF 1 < 0 ,D对.
故选:ACD.
34.AB
【分析】利用给定条件,结合椭圆定义求出椭圆方程,再判断点 SKIPIF 1 < 0 与椭圆的位置关系作答.
【详解】由椭圆的定义知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,即有 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 的周长为20,则有 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
椭圆C的方程为 SKIPIF 1 < 0 ,显然 SKIPIF 1 < 0 ,即点 SKIPIF 1 < 0 在椭圆上,
所以经过点 SKIPIF 1 < 0 的直线与椭圆C相交或相切.
故选:AB
35.AB
【分析】由题意知 SKIPIF 1 < 0 ,根据椭圆定义可判断选项A与选项B,利用点 SKIPIF 1 < 0 在椭圆内部可得 SKIPIF 1 < 0 ,即可判断选项C,由选项C知, SKIPIF 1 < 0 ,可判断选项D.
【详解】由长轴长为4,故 SKIPIF 1 < 0 ,由点Q在椭圆上,根据椭圆的定义得 SKIPIF 1 < 0 ,故A正确;
当离心率为 SKIPIF 1 < 0 时,可得 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最大值为 SKIPIF 1 < 0 .故B正确;
点 SKIPIF 1 < 0 在椭圆内部,故 SKIPIF 1 < 0 ,椭圆C离心率为 SKIPIF 1 < 0 ,故选项C不正确;
由选项C知, SKIPIF 1 < 0
SKIPIF 1 < 0
故不存在点Q使得 SKIPIF 1 < 0 ,选项D错误.
故选:AB.
36. SKIPIF 1 < 0
【分析】根据题意,设过点 SKIPIF 1 < 0 的切线方程为 SKIPIF 1 < 0 ,联立切线与椭圆 SKIPIF 1 < 0 的方程,由 SKIPIF 1 < 0 结合韦达定理表示出 SKIPIF 1 < 0 ,根据 SKIPIF 1 < 0 为定值,找出比例关系即可求解.
【详解】设点 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
设过点 SKIPIF 1 < 0 的切线方程为 SKIPIF 1 < 0 ,其中 SKIPIF 1 < 0 ,
联立 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
又因 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
化简得 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ,
又因 SKIPIF 1 < 0 为定值,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0 .
【点睛】求定值问题常见的方法有两种:
(1)从特殊入手,求出定值,再证明这个值与变量无关;
(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
37. SKIPIF 1 < 0
【解析】根据点P(k,1)在椭圆 SKIPIF 1 < 0 =1外,由 SKIPIF 1 < 0 >1求解.
【详解】因为点P(k,1)在椭圆 SKIPIF 1 < 0 =1外,
所以 SKIPIF 1 < 0 >1,
解得k< SKIPIF 1 < 0 或k> SKIPIF 1 < 0 ,
故实数k取值范围为 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0
38. SKIPIF 1 < 0
【分析】由 SKIPIF 1 < 0 在椭圆的内部有 SKIPIF 1 < 0 ,即可求参数m的范围.
【详解】∵点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 的内部,
∴ SKIPIF 1 < 0 ,整理得 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0
39. SKIPIF 1 < 0
【分析】根据点 SKIPIF 1 < 0 在椭圆面内得到 SKIPIF 1 < 0 之间的关系,利用二次函数配方法,然后求出 SKIPIF 1 < 0 的最小值.
【详解】 SKIPIF 1 < 0 点 SKIPIF 1 < 0 是椭圆面(包括椭圆及内部)上任意一点,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0
当且仅当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最小值 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0
【点睛】本题考查点与椭圆的位置关系,函数最值的应用,考查求解运算能力及转化思想.
40.2
【解析】首先根据已知条件得到 SKIPIF 1 < 0 ,从而得到 SKIPIF 1 < 0 在椭圆内,即可得到直线与椭圆的交点个数.
【详解】由题知:圆心 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离
SKIPIF 1 < 0 ,整理得: SKIPIF 1 < 0 .
SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆内,
又因为椭圆 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 在椭圆内,
所以过点 SKIPIF 1 < 0 的直线与椭圆 SKIPIF 1 < 0 有 SKIPIF 1 < 0 个交点.
故答案为: SKIPIF 1 < 0
【点睛】本题主要考查直线与椭圆,点与椭圆的位置关系,同时考查直线与圆的位置关系,属于简单题.
41. SKIPIF 1 < 0
【分析】设这条弦的两个端点分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,由中点坐标公式得 SKIPIF 1 < 0 ,利用点差法可求得直线 SKIPIF 1 < 0 的斜率,再由点斜式可得出这条弦所在直线的方程.
【详解】解:已知椭圆 SKIPIF 1 < 0 的弦被点 SKIPIF 1 < 0 平分,
设这条弦的两个端点分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
由于点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 均在椭圆 SKIPIF 1 < 0 上,则 SKIPIF 1 < 0 ,
两式相减得 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,
所以直线 SKIPIF 1 < 0 的斜率为 SKIPIF 1 < 0 ,
因此,这条弦所在直线的方程为 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
故答案为: SKIPIF 1 < 0 .
42.(1)证明见解析;
(2)证明见解析,定值为 SKIPIF 1 < 0
【分析】(1)根据题意,结合向量关系得 SKIPIF 1 < 0 ,进而求得直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 的方程,再联立得 SKIPIF 1 < 0 ,最后代入椭圆方程验证即可证明.
(2)由题设直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,进而与椭圆方程联立得 SKIPIF 1 < 0 ,再结合直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴垂直得直线 SKIPIF 1 < 0 的斜率互为相反数,进而利用斜率公式结合韦达定理代换化简整理得 SKIPIF 1 < 0 ,再讨论 SKIPIF 1 < 0 时直线 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,与已知矛盾,进而得 SKIPIF 1 < 0 .
(1)
解:由题知: SKIPIF 1 < 0 ,
则直线 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 的方程为: SKIPIF 1 < 0 ,
解方程组 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,
所以点 SKIPIF 1 < 0 在椭圆 SKIPIF 1 < 0 上.
(2)
解:由题知,直线 SKIPIF 1 < 0 的斜率存在且不为 SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,
联立 SKIPIF 1 < 0 得 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
因为直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴垂直,所以直线 SKIPIF 1 < 0 的斜率互为相反数,
所以 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
整理得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 。
化简得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
此时直线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,此时不能构成 SKIPIF 1 < 0 ,故不成立,
所以 SKIPIF 1 < 0 ,即直线 SKIPIF 1 < 0 的斜率 SKIPIF 1 < 0 为定值, SKIPIF 1 < 0 .
综上,直线 SKIPIF 1 < 0 的斜率 SKIPIF 1 < 0 为定值, SKIPIF 1 < 0 .
43.(1) SKIPIF 1 < 0 ;(2)在,证明见解析.
【分析】(1)由题意列关于a,b,c的方程,联立方程组求得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则椭圆方程可求;
(2)设 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),当 SKIPIF 1 < 0 时和 SKIPIF 1 < 0 时,求出A的坐标,代入椭圆方程验证知,A在椭圆上,当 SKIPIF 1 < 0 时,求出过点 O且垂直于 SKIPIF 1 < 0 的直线与椭圆的交点,写出该交点与P点的连线所在直线方程,由原点到直线的距离等于圆的半径说明直线是圆的切线,从而说明点A在椭圆C上.
【详解】(1)由题意得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
联立以上可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .∴椭圆 C的方程为 SKIPIF 1 < 0 ;
(2)如图,由(1)可知,椭圆的类准线方程为 SKIPIF 1 < 0 ,不妨取 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 ,
∴过原点且与 SKIPIF 1 < 0 垂直的直线方程为 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,过P点的圆的切线方程为 SKIPIF 1 < 0 ,
过原点且与 SKIPIF 1 < 0 垂直的直线方程为 SKIPIF 1 < 0 ,联立 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 ,
代入椭圆方程成立;
同理可得,当 SKIPIF 1 < 0 时,点A在椭圆上;
当 SKIPIF 1 < 0 时,联立 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 所在直线方程为 SKIPIF 1 < 0 .
此时原点O到该直线的距离 SKIPIF 1 < 0 ,
∴说明A点在椭圆C上;同理说明另一种情况的A也在椭圆C上.
综上可得,点A在椭圆C上.
【点睛】本题是新定义题,考查了椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,属难题.
44.(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 , SKIPIF 1 < 0 取最小值为 SKIPIF 1 < 0 .
【分析】(1)设 SKIPIF 1 < 0 的半径为 SKIPIF 1 < 0 ,根据 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,且与 SKIPIF 1 < 0 相切,得到 SKIPIF 1 < 0 ,进而得到 SKIPIF 1 < 0 ,再利用椭圆的定义求解;
(2)设 SKIPIF 1 < 0 ,结合 SKIPIF 1 < 0 ,计算 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 取定值时的t,写出 SKIPIF 1 < 0 , SKIPIF 1 < 0 方程,分别与 SKIPIF 1 < 0 联立求得 SKIPIF 1 < 0 求解.
【详解】(1)设 SKIPIF 1 < 0 的半径为 SKIPIF 1 < 0 ,因为 SKIPIF 1 < 0 过点 SKIPIF 1 < 0 ,且与 SKIPIF 1 < 0 相切,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
因为 SKIPIF 1 < 0 ,所以点 SKIPIF 1 < 0 的轨迹是以 SKIPIF 1 < 0 , SKIPIF 1 < 0 为焦点的椭圆.
设椭圆的方程为 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),则 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
所以曲线 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0 .
(2)设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
于是 SKIPIF 1 < 0 ,
显然,只有 SKIPIF 1 < 0 即 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取定值 SKIPIF 1 < 0 ,
此时 SKIPIF 1 < 0 方程为 SKIPIF 1 < 0 , SKIPIF 1 < 0 方程为 SKIPIF 1 < 0 .
联立 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 知 SKIPIF 1 < 0 、 SKIPIF 1 < 0 异号.
所以 SKIPIF 1 < 0 .
当且仅当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 取最小值为 SKIPIF 1 < 0 .
【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
45.(1) SKIPIF 1 < 0 (2) SKIPIF 1 < 0
【解析】(1)运用椭圆的离心率公式和 SKIPIF 1 < 0 的关系,可求得 SKIPIF 1 < 0 ,从而得到椭圆方程.
(2) 设点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求得点 SKIPIF 1 < 0 的坐标,分别代入椭圆 SKIPIF 1 < 0 的方程,化简整理,即可得到答案.
【详解】解:(1)以 SKIPIF 1 < 0 为圆心以3为半径的圆与以 SKIPIF 1 < 0 为圆心以1为半径的圆相交,且交点在椭圆 SKIPIF 1 < 0 上.
设这两圆的交点为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
所以椭圆 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0
(2)由(1)知椭圆 SKIPIF 1 < 0 的方程为 SKIPIF 1 < 0
设点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,由题意知 SKIPIF 1 < 0
因为 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
【点睛】本题考查椭圆方程和性质,考查点在椭圆上的应用,属于中档题.
46.(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【解析】(1)根据椭圆的长轴长为4,短轴长为2,得到 SKIPIF 1 < 0 ,写出椭圆方程.
(2)设点 SKIPIF 1 < 0 ,易知 SKIPIF 1 < 0 ,由OH垂直于直线PB,得到 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,两方程联立求解即可.
【详解】(1)因为椭圆 SKIPIF 1 < 0 的长轴长为4,短轴长为2,
所以 SKIPIF 1 < 0 ,
所以椭圆C的标准方程是 SKIPIF 1 < 0 ;
(2)设点 SKIPIF 1 < 0 ,因为A,B分别为椭圆C的左、右顶点,
所以 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
因为直线OH垂直直线PB,
所以 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 ,
所以直线OH与直线AP的交点M的横坐标为定值 SKIPIF 1 < 0 .
47.(1);(2)详见解析;(3)
【详解】试题分析:根据长轴长,短轴长,可求出椭圆的方程;根据点的坐标可写出直线的方程,同理也可写出直线的方程,再求出它们的交点的坐标,验证在椭圆上即可得证;类比(2)的结论,即可得到直线与直线的交点一定在椭圆Q上.
试题解析:
根据题意可知,椭圆的焦点在轴上,可设其标准方程为,
因为长轴长,短轴长,所以,
所以所求的椭圆的标准方程为:.
由题意知,
可得直线的方程为,直线的方程为,
联立可解得其交点,将的坐标代入椭圆方程成立,即点在椭圆上得证.
另法:设直线、交点,
由三点共线得: ①
由三点共线得: ②
①②相乘,整理可得,即
所以L在椭圆上.
(3)类比(2)的结论,即可得到直线与直线的交点一定在椭圆Q上.
考点:本题考查了直线的方程,椭圆的方程的求解方法,以及直线与圆锥曲线的位置关系.
相关试卷
新高考数学一轮复习考点过关练习 求函数零点(含解析):
这是一份新高考数学一轮复习考点过关练习 求函数零点(含解析),共31页。
新高考数学一轮复习考点过关练习 幂函数的图象和性质(含解析):
这是一份新高考数学一轮复习考点过关练习 幂函数的图象和性质(含解析),共28页。
新高考数学一轮复习考点过关练习 对数函数的图象和性质(含解析):
这是一份新高考数学一轮复习考点过关练习 对数函数的图象和性质(含解析),共42页。