





新高考数学一轮复习讲与练第09讲 平面向量(讲)(2份打包,原卷版+解析版)
展开本讲为高考命题热点,分值10分,题型以选择题为主,多出现于高考前六题选择题中,
平面向量主要考察线性运算,坐标运算与数量积运算,近几年多考察拓展类,例如平面向量中的范围最值,平面向量与三角函数结合等内容;复数主要考察复数的概念,四则运算与复数的模与几何意义,考察逻辑推理能力,运算求解能力.
考点一 平面向量的概念及线性运算
1.向量的有关概念
(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)零向量:长度为0的向量,其方向是任意的.
(3)单位向量:长度等于1个单位的向量.
(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.
(5)相等向量:长度相等且方向相同的向量.
(6)相反向量:长度相等且方向相反的向量.
2.向量的线性运算
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.
4.重要结论
(1)一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即eq \(A1A2,\s\up6(→))+eq \(A2A3,\s\up6(→))+eq \(A3A4,\s\up6(→))+…+An-1An=eq \(A1An,\s\up6(→)),特别地, 一个封闭图形,首尾连接而成的向量和为零向量.
(2)中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则eq \(OP,\s\up6(→))=eq \f(1,2)(eq \(OA,\s\up6(→))+eq \(OB,\s\up6(→))).
(3)eq \(OA,\s\up6(→))=λeq \(OB,\s\up6(→))+μeq \(OC,\s\up6(→))(λ,μ为实数),若点A,B,C共线,则λ+μ=1.
(4)解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.
考点二 平面向量基本定理及坐标运算
1.平面向量的基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.
其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
2.平面向量的正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.
3.平面向量的坐标运算
(1)向量加法、减法、数乘运算及向量的模
设a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq \r(xeq \\al(2,1)+yeq \\al(2,1)).
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标.
②设A(x1,y1),B(x2,y2),则eq \(AB,\s\up6(→))=(x2-x1,y2-y1),|eq \(AB,\s\up6(→))|=eq \r((x2-x1)2+(y2-y1)2).
4.平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.
5.重要结论
(1)平面内不共线向量都可以作为基底,反之亦然.
(2)若a与b不共线,λa+μb=0,则λ=μ=0.
(3)向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.
考点三 平面向量的数量积及平面向量的应用
1.平面向量数量积的有关概念
(1)向量的夹角:已知两个非零向量a和b,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.
(2)数量积的定义:已知两个非零向量a与b,它们的夹角为θ,则a与b的数量积(或内积)a·b=|a||b|cs__θ.规定:零向量与任一向量的数量积为0,即0·a=0.
(3)数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cs__θ的乘积.
2.平面向量数量积的性质及其坐标表示
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
(1)数量积:a·b=|a||b|cs θ=x1x2+y1y2.
(2)模:|a|=eq \r(a·a)=eq \r(xeq \\al(2,1)+yeq \\al(2,1)).
(3)夹角:cs θ=eq \f(a·b,|a||b|)=eq \f(x1x2+y1y2,\r(xeq \\al(2,1)+yeq \\al(2,1))·\r(xeq \\al(2,2)+yeq \\al(2,2))).
(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ eq \r(xeq \\al(2,1)+yeq \\al(2,1))·eq \r(xeq \\al(2,2)+yeq \\al(2,2)).
3.平面向量数量积的运算律
(1)a·b=b·a(交换律).
(2)λa·b=λ(a·b)=a·(λb)(结合律).
(3)(a+b)·c=a·c+b·c(分配律).
4.平面几何中的向量方法
三步曲:(1)用向量表示问题中的几何元素,将几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系;
(3)把运算结果“翻译”成几何关系.
5.重要结论
(1)两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.
(2)平面向量数量积运算的常用公式
= 1 \* GB3 \* MERGEFORMAT ①(a+b)·(a-b)=a2-b2;
= 2 \* GB3 \* MERGEFORMAT ②(a+b)2=a2+2a·b+b2.
= 3 \* GB3 \* MERGEFORMAT ③(a-b)2=a2-2a·b+b2.
(3)数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0),不能得出b=c,两边不能约去同一个向量.
高频考点一 平面向量的线性运算
【例1】已知两个非零向量a,b满足|a+b|=|a-b|,则下列结论正确的是( )
A.a∥b B.a⊥b
C.|a|=|b| D.a+b=a-b
【例2】 (2022·成都七中诊断)如图,AB是圆O的一条直径,C,D为半圆弧的两个三等分点,则eq \(AB,\s\up6(→))=( )
A.eq \(AC,\s\up6(→))-eq \(AD,\s\up6(→))B.2eq \(AC,\s\up6(→))-2eq \(AD,\s\up6(→))
C.eq \(AD,\s\up6(→))-eq \(AC,\s\up6(→))D.2eq \(AD,\s\up6(→))-2eq \(AC,\s\up6(→))
【例3】(2022·长春调研)在△ABC中,延长BC至点M使得BC=2CM,连接AM,点N为AM上一点且eq \(AN,\s\up6(→))=eq \f(1,3)eq \(AM,\s\up6(→)),若eq \(AN,\s\up6(→))=λeq \(AB,\s\up6(→))+μeq \(AC,\s\up6(→)),则λ+μ=( )
A.eq \f(1,3) B.eq \f(1,2)
C.-eq \f(1,2)D.-eq \f(1,3)
【方法技巧】
1.(1)解决平面向量线性运算问题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.
(2)在求向量时要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则及三角形中位线定理、相似三角形对应边成比例等平面几何的性质,把未知向量转化为用已知向量线性表示.
2.与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.
【变式训练】
1.在△ABC中,AD为BC边上的中线,E为AD的中点,则eq \(EB,\s\up6(→))=( )
A.eq \f(3,4)eq \(AB,\s\up6(→))-eq \f(1,4)eq \(AC,\s\up6(→)) B.eq \f(1,4)eq \(AB,\s\up6(→))-eq \f(3,4)eq \(AC,\s\up6(→))
C.eq \f(3,4)eq \(AB,\s\up6(→))+eq \f(1,4)eq \(AC,\s\up6(→)) D.eq \f(1,4)eq \(AB,\s\up6(→))+eq \f(3,4)eq \(AC,\s\up6(→))
2.(2022·济南质检)在正六边形ABCDEF中,对角线BD,CF相交于点P.若eq \(AP,\s\up6(→))=xeq \(AB,\s\up6(→))+yeq \(AF,\s\up6(→)),则x+y=( )
A.2 B.eq \f(5,2)
C.3 D.eq \f(7,2)
高频考点二 共线定理及其应用
【例4】 (1)设e1与e2是两个不共线向量,eq \(AB,\s\up6(→))=3e1+2e2,eq \(CB,\s\up6(→))=ke1+e2,eq \(CD,\s\up6(→))=3e1-2ke2,若A,B,D三点共线,则k的值为________.
(2)(2021·合肥模拟)在平行四边形 ABCD中,若eq \(DE,\s\up6(→))=eq \(EC,\s\up6(→)),AE交BD于F,则eq \(AF,\s\up6(→))=( )
A.eq \f(2,3)eq \(AB,\s\up6(→))+eq \f(1,3)eq \(AD,\s\up6(→)) B.eq \f(2,3)eq \(AB,\s\up6(→))-eq \f(1,3)eq \(AD,\s\up6(→))
C.eq \f(1,3)eq \(AB,\s\up6(→))-eq \f(2,3)eq \(AD,\s\up6(→)) D.eq \f(1,3)eq \(AB,\s\up6(→))+eq \f(2,3)eq \(AD,\s\up6(→))
【方法技巧】
1.证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.
2.向量a,b共线是指存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.
【变式训练】
1.已知a,b是不共线的向量,eq \(AB,\s\up6(→))=λa+b,eq \(AC,\s\up6(→))=a+μb,λ,μ∈R,则A,B,C三点共线的充要条件为( )
A.λ+μ=2 B.λ-μ=1
C.λμ=-1 D.λμ=1
2.已知A,B,C是直线l上不同的三个点,点O不在直线l上,则使等式x2eq \(OA,\s\up6(→))+xeq \(OB,\s\up6(→))+eq \(BC,\s\up6(→))=0成立的实数x的取值集合为________.
高频考点三 平面向量基本定理及其应用
【例5】如图所示,已知在△OCB中,A是CB的中点,D是将eq \(OB,\s\up6(→))分成2∶1的一个内分点,DC和OA交于点E,设eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b.
(1)用a和b表示向量eq \(OC,\s\up6(→)),eq \(DC,\s\up6(→));
(2)若eq \(OE,\s\up6(→))=λeq \(OA,\s\up6(→)),求实数λ的值.
【方法技巧】
1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.
2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.
【变式训练】
1.(2022·银川调研)在△ABC中,M,N分别是边AB,AC的中点,点O是线段MN上异于端点的一点,且满足λeq \(OA,\s\up6(→))+3eq \(OB,\s\up6(→))+4eq \(OC,\s\up6(→))=0(λ≠0),则λ=________.
高频考点四 平面向量共线定理的坐标表示
【例6】 已知点A(4,0),B(4,4),C(2,6),O为坐标原点,则AC与OB的交点P的坐标为________.
【例7】(1)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),则λ=________.
(2)(2021·福州八校联考)设向量eq \(OA,\s\up6(→))=(1,-2),eq \(OB,\s\up6(→))=(a,-1),eq \(OC,\s\up6(→))=(-b,0),其中O为坐标原点,且a>0,b>0,若A,B,C三点共线,则eq \f(1,a)+eq \f(2,b)的最小值为( )
A.8 B.9 C.6 D.4
【方法技巧】
1.两平面向量共线的充要条件有两种形式:(1)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2-x2y1=0;
(2)若a∥b(b≠0),则a=λb.
2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.
【变式训练】
1.(2022·太原联考)已知向量e1=(1,1),e2=(0,1),若a=e1+λe2与b=-(2e1-3e2)共线,则实数λ=________.
2.(2022·安徽江南十校调研)在直角坐标系xOy中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上,且|eq \(OC,\s\up6(→))|=3eq \r(10),则向量eq \(OC,\s\up6(→))的坐标为________.
高频考点五 平面向量的数量积运算
【例8】已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )
A.4 B.3
C.2 D.0
【方法技巧】
1.计算平面向量的数量积主要方法:
(1)利用定义:a·b=|a||b|cs〈a,b〉.
(2)利用坐标运算,若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
(3)活用平面向量数量积的几何意义.
2.解决涉及几何图形的向量的数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简后再运算.但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补.
【变式训练】
1.(2020北京卷)已知正方形ABCD的边长为2,点P满足eq \(AP,\s\up6(→))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\(AB,\s\up6(→))+\(AC,\s\up6(→)))),则|eq \(PD,\s\up6(→))|=__________;eq \(PB,\s\up6(→))·eq \(PD,\s\up6(→))=__________.
高频考点六 向量数量积的性质及应用
【例9】已知向量a,b满足|a|=5,|b|=6,a·b=-6,则cs 〈a,a+b〉=( )
A.-eq \f(31,35) B.-eq \f(19,35)
C.eq \f(17,35) D.eq \f(19,35)
【例10】已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的最大值是________.
【方法技巧】
1.两个向量垂直的充要条件是两向量的数量积为0,若a=(x1,y1),b=(x2,y2),则a⊥b⇔a·b=0⇔x1x2+y1y2=0.
2.若题目给出向量的坐标,可直接运用公式cs θ=eq \f(x1x2+y1y2,\r(xeq \\al(2,1)+yeq \\al(2,1))·\r(xeq \\al(2,2)+yeq \\al(2,2)))求解.没有坐标时可用公式cs θ=eq \f(a·b,|a||b|).研究向量夹角应注意“共起点”,注意取值范围是[0,π].
3.向量模的计算主要利用a2=|a|2,把向量模的运算转化为数量积运算,有时借助几何图形的直观性,数形结合,提高解题效率.
【变式训练】
1.(2022·太原质检)已知平面向量a=(4,-2),b=(1,-3),若a+λb与b垂直,则λ=( )
A.-2 B.2
C.-1 D.1
2.(2022·河南部分重点中学联考)已知单位向量a,b的夹角为θ,且tan θ=eq \f(1,2),若向量m=eq \r(5)a-3b,则|m|=( )
A.eq \r(2) B.eq \r(3)
C.eq \r(26) D.eq \r(2)或eq \r(26)
向量运算
定 义
法则(或几何意义)
运算律
加法
求两个向量和的运算
(1)交换律:a+b=b+a
(2)结合律:
(a+b)+c=
a+(b+c)
减法
减去一个向量相当于加上这个向量的相反向量
a-b=a+(-b)
数乘
求实数λ与向量a的积的运算
(1)|λa|=|λ||a|;
(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0
λ(μa)=λμa;
(λ+μ)a=λa+μa;
λ(a+b)=λa+λb
新高考数学一轮复习讲与练第10讲 复数(讲)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第10讲 复数(讲)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第10讲复数讲原卷版doc、新高考数学一轮复习讲与练第10讲复数讲解析版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
新高考数学一轮复习讲与练第10讲 复数(练)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第10讲 复数(练)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第10讲复数练原卷版doc、新高考数学一轮复习讲与练第10讲复数练解析版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
新高考数学一轮复习讲与练第09讲 平面向量(练)(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习讲与练第09讲 平面向量(练)(2份打包,原卷版+解析版),文件包含新高考数学一轮复习讲与练第09讲平面向量练原卷版doc、新高考数学一轮复习讲与练第09讲平面向量练解析版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。