四川省大邑中学2024-2025学年高一新生上学期入学分班质量检测数学试题
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使边AD与对角线BD重合,点A落在点A'处,折痕为DG,则AG的长为( )
A.2B.1C.43D.32
2、(4分)如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:
①当时,两个探测气球位于同一高度
②当时,乙气球位置高;
③当时,甲气球位置高;
其中,正确结论的个数是( )
A.个B.个C.个D.个
3、(4分)函数y=x+m与y=(m≠0)在同一坐标系内的图象可以是( )
A.B.
C.D.
4、(4分)若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )
A.90°B.60°C.120°D.45°
5、(4分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为 ( )
A.B.C.D.
6、(4分)对于函数,下列结论正确的是( )
A.它的图象必经过点(-1,1)B.它的图象不经过第三象限
C.当时,D.的值随值的增大而增大
7、(4分)某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是( )
A.总体 B.总体中的一个样本 C.样本容量 D.个体
8、(4分)已知下面四个方程: +3x=9;+1=1;=1;=1.其中,无理方程的个数是( )
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在口ABCD中,E为边BC上一点,以AE为边作矩形AEFG.若∠BAE=40°,∠CEF=15°,则∠D的大小为_____度.
10、(4分)计算:=_____.
11、(4分)已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
12、(4分)直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于X的不等式 k1x+b>k2x+c的解集为_____.
13、(4分)菱形的周长是20,一条对角线的长为6,则它的面积为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1) (2)
(3) (4)
15、(8分)如图,已知点是反比例函数的图象上一点过点作轴于点,连结,的面积为.
(1)求和的值.
(2)直线与的延长线交于点,与反比例函数图象交于点.
①若,求点坐标;②若点到直线的距离等于,求的值.
16、(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
17、(10分)先阅读材料:
分解因式:.
解:令,
则
所以.
材料中的解题过程用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,请你运用这种思想方法解答下列问题:
(1)分解因式:__________;
(2)分解因式:;
(3)证明:若为正整数,则式子的值一定是某个整数的平方.
18、(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,
(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将函数y=12x-2的图象向上平移_____个单位后,所得图象经过点(0,1).
20、(4分)直接写出计算结果:(2xy)∙(-3xy3)2=_____.
21、(4分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为_____.
22、(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为______.
23、(4分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,的顶点A、B、C在格点(网格线的交点)上.
(1)将绕点B逆时针旋转90°,得到,画出;
(2)以点A为位似中心放大,得到,使放大前后的三角形面积之比为1:4,请你在网格内画出.
25、(10分)一块直角三角形木块的面积为1.5m2,直角边AB长1.5m,想要把它加工成一个面积尽可能大的正方形桌面,甲、乙两人的加工方法分别如图①、图②所示。你能用所学知识说明谁的加工方法更符合要求吗?
26、(12分)如图,已知E,F分别是▱ABCD的边BC、AD上的点,且BE=DF
求证:四边形AECF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由题得BD=AB2+AD2 =5,根据折叠的性质得出△ADG≌△A′DG,继而得A′G=AG,A′D=AD,A′B=BD-A′G,再Rt△A′BG根据勾股定理构建等式求解即可.
【详解】
解:由题得BD=AB2+AD2 =5,
根据折叠的性质得出:△ADG≌△A′DG,
∴A′G=AG,A′D=AD=3,
A′B=BD-A′G=5-3=2,BG=4-A′G
在Rt△A′BG中,BG2=A′G2+A′B2可得:,
解得A′G=32,则AG=32,
故选:D.
本题主要考查折叠的性质,由已知能够注意到△ADG≌△A′DG是解决的关键.
2、D
【解析】
根据图象进行解答即可.
【详解】
解:①当x=10时,两个探测气球位于同一高度,正确;
②当x>10时,乙气球位置高,正确;
③当0≤x<10时,甲气球位置高,正确;
故选:D.
本题考查了一次函数的应用、解题的关键是根据图象进行解答.
3、C
【解析】
根据一次函数y=x+m的图象必过一、三象限,可判断出选项B、D不符合题意,然后针对A、C选项,先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.
【详解】
一次函数y=x+m中,k=1>0,所以函数图象必过一、三象限,观察可知B、D选项不符合题意;
A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;
C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确,
故选C.
本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
4、D
【解析】
首先设平行四边形中两个内角分别为x°,3x°,由平行四边形的邻角互补,即可得x+3x=180,继而求得答案.
【详解】
解:∵平行四边形中两个内角的度数之比为1:3,
∴设平行四边形中两个内角分别为x°,3x°,
∴x+3x=180,
解得:x=45,
∴其中较小的内角是45°.
故选D.
本题考查了平行四边形的性质,掌握平行四边形的邻角互补是解题的关键.
5、A
【解析】
先根据矩形的判定得出四边形是矩形,再根据矩形的性质得出,互相平分且相等,再根据垂线段最短可以得出当时,的值最小,即的值最小,根据面积关系建立等式求解即可.
【详解】
解:∵,,,
∴,
∵,,
∴四边形是矩形,
∴,互相平分,且,
又∵为与的交点,
∴当的值时,的值就最小,
而当时,有最小值,即此时有最小值,
∵,
∴,
∵,,,
∴,
∴,
∴.
故选:.
本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出取最小值时图形的特点是解题关键.
6、B
【解析】
将x=-1代入一次函数解析式求出y值即可得出A错误;由一次函数解析式结合一次函数系数与图象的关系即可得出B正确;求出一次函数与x轴的交点即可得出C错误;由一次函数一次项系数k=-3<0即可得出D不正确.此题得解.
【详解】
A、令y=-3x+4中x=-1,则y=8,
∴该函数的图象不经过点(-1,1),即A错误;
B、∵在y=-3x+4中k=-3<0,b=4>0,
∴该函数图象经过第一、二、四象限,即B正确;
C、令y=-3x+4中y=0,则-3x+4=0,解得:x=,
∴该函数的图象与x轴的交点坐标为(,0),
∴当x<时,y>0,故C错误;
D、∵在y=-3x+4中k=-3<0,
∴y的值随x的值的增大而减小,即D不正确.
故选:B.
本题考查了一次函数的性质以及一次函数图象与系数的关系,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.
7、B
【解析】试题解析:首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.4株葡萄的产量是样本.
故选B.
8、A
【解析】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义即可判断.
【详解】
无理方程的定义是:根号下含有未知数的方程即为无理方程,根据定义只有第一个方程为无理方程.即+3x=9,1个,
故选:A.
本题直接考查了无理方程的概念--根号下含有未知数的方程即为无理方程.准确掌握此概念即可解题..
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.
【详解】
解:∵四边形AEFG是正方形,
∴∠AEF=90°,
∵∠CEF=15°,
∴∠AEB=180°-90°-15°=75°,
∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=1°
故答案为:1.
本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.
10、
【解析】
先通分,再把分子相加减即可.
【详解】
解:原式=
故答案为:
本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
11、-2
【解析】
试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
考点:一次函数图象与系数的关系.
12、x>1
【解析】
根据图形,找出直线 k1x+b在直线k2x+c上方部分的x的取值范围即可.
【详解】
解:由图形可知,当x>1时,k1x+b>k2x+c,
所以,不等式的解集是x>1.
故答案为x>1.
本题考查了两直线相交的问题,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.
13、1.
【解析】
先画出图形,根据菱形的性质可得,DO=3,根据勾股定理可求得AO的长,从而得到AC的长,再根据菱形的面积公式即可求得结果.
【详解】
由题意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考点:本题考查的是菱形的性质
解答本题的关键是熟练掌握菱形的对角线互相垂直且平分,菱形的四条边相等;同时熟记菱形的面积等于对角线乘积的一半.
三、解答题(本大题共5个小题,共48分)
14、(1)5;(2)-5;(3);(4)
【解析】
根据算术平方根的定义以及二次根式的性质,分别对(1)(2)(3)(4)进行化简计算即可.
【详解】
解:(1)
(2)
(3)
(4)
本题主要考查了算术平方根的定义,熟练掌握二次根式的性质是解答本题的关键.
15、(1),;(2)①;②.
【解析】
(1)根据题意将点的坐标代入反比例函数进行运算即可.
(2) ①将,将代入即可得出点C的坐标
②将代入求得点,得出E的横坐标,再代入反比例函数中计算即可
【详解】
解:(1)根据题意可知:的面积=k,
又反比例函数的图象位于第一象限,k>0,则k=8
将k=8和代入反比例函数即可得m=4
(2)①若,将代入,可得点.
②将代入,可得点,则.
点的横坐标为:.
点E在直线上,点E的纵坐标为:,
点的反比例函数上,.
解得:,(舍去)
.
本题考查反比例函数,熟练掌握计算法则是解题关键.
16、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
17、(1);(2);(3)证明见解析.
【解析】
(1)令,根据材料中的解题过程和完全平方公式因式分解即可;
(2)令,根据材料中的解题过程和完全平方公式因式分解即可;
(3)根据多项式乘多项式法则和完全平方公式因式分解,即可得出结论.
【详解】
解:(1)令,
则
所以.
(2)令,
则
,
所以.
(3)
.
∵是正整数,
∴也为正整数.
∴式子的值一定是某一个整数的平方.
此题考查的是因式分解,掌握利用“整体思想”和完全平方公式因式分解是解决此题的关键.
18、解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
【解析】
试题分析:(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,
∴矩形AEBD是正方形.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据一次函数平移“上加下减”,即可求出.
【详解】
解:函数y=12x-2的图象与y轴的交点坐标是(0,-2),
图象需要向上平移1-(-2)=3个单位才能经过点(0,1).
故答案为:3.
本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.
20、18.
【解析】
根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.
【详解】
(2xy)•(-3xy3)2
=(2×9)•(x•x2)•(y•y6)
=18x3y7.
本题考查了单项式与单项式相乘.熟练掌握运算法则是解题的关键.
21、(﹣,1)
【解析】
如图作AF⊥x轴于F,CE⊥x轴于E.
∵四边形ABCD是正方形,
∴OA=OC,∠AOC=90°,
∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,
∴∠COE=∠OAF,
在△COE和△OAF中,
,
∴△COE≌△OAF,
∴CE=OF,OE=AF,
∵A(1,),
∴CE=OF=1,OE=AF=,
∴点C坐标(﹣,1),
故答案为(,1).
点睛:本题考查正方形的性质、全等三角形的判定和性质等知识,坐标与图形的性质,解题的关键是学会添加常用的辅助线,构造全等三角形解决问题,属于中考常考题型.注意:距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.
22、
【解析】
如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可.
【详解】
解:如图,连接EA,EC,
∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,
∴∠AEC=90°,
∵∠ACE=∠ACG=∠BCG=60°,
∴∠ECB=180°,
∴E、C、B共线,
∴AE即为△ACB的BC边上的高,
∴AE=,
故答案为.
本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.
23、或或1
【解析】
如图所示:
①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
③当PA=PE时,底边AE=1;
综上所述:等腰三角形AEP的对边长为或或1;
故答案为或或1.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)见解析
【解析】
(1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
(2)分别作出点B、C变换后的对应点,再顺次连接即可得.
【详解】
(1)如图所示,△A1BC1即为所求.
(2)如图所示,△AB2C2即为所求.
考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.
25、甲的加工更符合要求.图①中正方形的边长是,图②中的正方形边长是,因为>,所以甲的加工更符合要求.
【解析】由于有正方形的一边平行于三角形的一边,故可用相似三角形的性质求解.
26、证明见解析.
【解析】
首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.
【详解】
解:∵□ABCD,∴AD=BC,AD∥BC,
又∵BE=DF,∴AF=CE,
∴四边形AECF为平行四边形.
此题考查的知识点是平行四边形的判定和性质,解题的关键是运用平行四边形的性质推出结论.
题号
一
二
三
四
五
总分
得分
四川省成都市金堂县淮口中学校2024-2025学年高一新生上学期入学分班质量检测数学试题: 这是一份四川省成都市金堂县淮口中学校2024-2025学年高一新生上学期入学分班质量检测数学试题,共22页。试卷主要包含了选择题,四象限,则k能取的最大整数为,解答题等内容,欢迎下载使用。
四川省简阳中学2024-2025学年高一新生上学期入学分班质量检测数学试题: 这是一份四川省简阳中学2024-2025学年高一新生上学期入学分班质量检测数学试题,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省蒲江县寿安中学2024-2025学年高一新生上学期入学分班质量检测数学试题: 这是一份四川省蒲江县寿安中学2024-2025学年高一新生上学期入学分班质量检测数学试题,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。