年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    第六章 §6.3 等比数列-2025年新高考数学一轮复习(课件+讲义+练习)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      第六章 §6.3 等比数列.pptx
    • 练习
      第六章 §6.3 等比数列(教师版).docx
    • 练习
      第六章 §6.3 等比数列(同步练习).docx
    • 讲义
      第六章 §6.3 等比数列-2025新高考一轮复习讲义(学生版).docx
    第六章 §6.3 等比数列第1页
    第六章 §6.3 等比数列第2页
    第六章 §6.3 等比数列第3页
    第六章 §6.3 等比数列第4页
    第六章 §6.3 等比数列第5页
    第六章 §6.3 等比数列第6页
    第六章 §6.3 等比数列第7页
    第六章 §6.3 等比数列第8页
    第六章 §6.3 等比数列(教师版)第1页
    第六章 §6.3 等比数列(教师版)第2页
    第六章 §6.3 等比数列(教师版)第3页
    第六章 §6.3 等比数列(同步练习)第1页
    第六章 §6.3 等比数列-2025新高考一轮复习讲义(学生版)第1页
    第六章 §6.3 等比数列-2025新高考一轮复习讲义(学生版)第2页
    还剩52页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第六章 §6.3 等比数列-2025年新高考数学一轮复习(课件+讲义+练习)

    展开

    这是一份第六章 §6.3 等比数列-2025年新高考数学一轮复习(课件+讲义+练习),文件包含第六章§63等比数列pptx、第六章§63等比数列教师版docx、第六章§63等比数列同步练习docx、第六章§63等比数列-2025新高考一轮复习讲义学生版docx等4份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
    1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
    1.通过生活中的实例,理解等比数列的概念和通项公式的意义.2.掌握等比数列前n项和公式,理解等比数列的通项公式与前n项和公式的关系.3.能在具体问题情境中,发现数列的等比关系,并解决相应的问题.4.体会等比数列与指数函数的关系.
    第一部分 落实主干知识
    第二部分 探究核心题型
    1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母q(q≠0)表示.(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成 数列,那么 叫做a与b的等比中项,此时,G2= .
    2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比为q,则其通项公式为an= .(2)等比数列通项公式的推广:an=amqn-m.(3)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=________ = .
    3.等比数列的常用性质(1)若m+n=p+q,则 ,其中m,n,p,q∈N*.特别地,若2w=m+n,则 ,其中m,n,w∈N*.(2)ak,ak+m,ak+2m,…仍是等比数列,公比为 (k,m∈N*).(3)若数列{an},{bn}是两个项数相同的等比数列,则数列{ban},{pan·qbn}和 也是等比数列(b,p,q≠0).
    4.等比数列前n项和的常用性质若等比数列{an}的公比q≠-1, 前n项和为Sn,则Sn, ,________仍成等比数列,其公比为qn.
    1.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.2.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).3.设数列{an}是等比数列,Sn是其前n项和.(1)Sm+n=Sn+qnSm=Sm+qmSn.
    1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)等比数列的公比q是一个常数,它可以是任意实数.(  )(2)三个数a,b,c成等比数列的充要条件是b2=ac.(  )(3)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(  )(4)对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积.(  )
    2.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
    若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.
    由S3=a1+a2+a3=a3(q-2+q-1+1),得q-2+q-1+1=3,即2q2-q-1=0,
    4.(选择性必修第二册P31T4改编)数列{an}的通项公式是an=an(a≠0),则其前n项和为Sn=______________________.
    因为a≠0,an=an,所以{an}是以a为首项,a为公比的等比数列.当a=1时,Sn=n;
    例1 (1)(2023·全国甲卷)设等比数列{an}的各项均为正数,前n项和为Sn,若a1=1,S5=5S3-4,则S4等于
    题型一 等比数列基本量的运算
    方法一 若该数列的公比q=1,代入S5=5S3-4中,有5=5×3-4,不成立,所以q≠1.
    化简得q4-5q2+4=0,所以q2=1或q2=4,因为此数列各项均为正数,
    方法二 由题知1+q+q2+q3+q4=5(1+q+q2)-4,即q3+q4=4q+4q2,即q3+q2-4q-4=0,即(q-2)(q+1)(q+2)=0.由题知q>0,所以q=2.所以S4=1+2+4+8=15.
    (2)记Sn为等比数列{an}的前n项和.若a5-a3=12,a6-a4=24,则 等于A.2n-1 B.2-21-nC.2-2n-1 D.21-n-1
    方法一 设等比数列{an}的公比为q,易知q≠1,
    方法二 设等比数列{an}的公比为q,易知q≠1,
    等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.
    跟踪训练1 (1)(2023·天津)已知{an}为等比数列,Sn为数列{an}的前n项和,an+1=2Sn+2,则a4的值为A.3   B.18   C.54   D.152
    由题意可得,当n=1时,a2=2a1+2,即a1q=2a1+2,①当n=2时,a3=2(a1+a2)+2,即a1q2=2(a1+a1q)+2,②
    (2)(2023·青岛模拟)云冈石窟,古称为武州山大石窟寺,是世界文化遗产.若某一石窟的某处“浮雕像”共7层,每一层的“浮雕像”个数是其下一层的2倍,共有1 016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上每一层的“浮雕像”的个数构成数列{an},则lg2(a3a5)的值为A.8   B.10   C.12   D.16
    从最下层往上每一层的“浮雕像”的个数构成数列{an},则{an}是以2为公比的等比数列,
    解得a1=8,∴an=8×2n-1,∴lg2(a3a5)=lg2(8×22×8×24)=12.
    例2 (2023·长沙模拟)记Sn为数列{an}的前n项和,已知a1=2,a2=-1,且an+2+an+1-6an=0(n∈N*).(1)证明:{an+1+3an}为等比数列;
    题型二 等比数列的判定与证明
    由an+2+an+1-6an=0,可得an+2+3an+1=2(an+1+3an),
    ∴{an+1+3an}是以a2+3a1=5为首项,2为公比的等比数列.
    (2)求数列{an}的通项公式an及前n项和Sn.
    由(1)可知an+1+3an=5·2n-1(n∈N*),∴an+1-2n=-3(an-2n-1),
    ∴{an-2n-1}是以a1-20=1为首项,-3为公比的等比数列,∴an-2n-1=1×(-3)n-1,∴an=2n-1+(-3)n-1,
    等比数列的四种常用判定方法(1)定义法:若 =q(q为非零常数,且n≥2,n∈N*),则{an}是等比数列.(2)等比中项法:若在数列{an}中,an≠0且 =anan+2(n∈N*),则{an}是等比数列.(3)通项公式法:若数列{an}的通项公式可写成an=cqn-1(c,q均为非零常数,n∈N*),则{an}是等比数列.(4)前n项和公式法:若数列{an}的前n项和Sn=kqn-k(k为常数,且k≠0,q≠0,1),则{an}是等比数列.
    跟踪训练2 (2024·潍坊模拟)已知数列{an}和{bn}满足a1=3,b1=2,an+1=an+2bn,bn+1=2an+bn.(1)证明:{an+bn}和{an-bn}都是等比数列;
    因为an+1=an+2bn,bn+1=2an+bn,所以an+1+bn+1=3(an+bn),an+1-bn+1=-(an-bn),又由a1=3,b1=2得a1-b1=1,a1+b1=5,所以数列{an+bn}是首项为5,公比为3的等比数列,数列{an-bn}是首项为1,公比为-1的等比数列.
    (2)求{anbn}的前n项和Sn.
    由(1)得an+bn=5×3n-1,an-bn=(-1)n-1,
    命题点1 项的性质例3 (1)(2023·全国乙卷)已知{an}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.
    题型三 等比数列的性质
    方法一 {an}为等比数列,∴a4a5=a3a6,∴a2=1,又a2a9a10=a7a7a7,∴1×(-8)=(a7)3,∴a7=-2.
    方法二 设{an}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然an≠0,则a4=q2,即a1q3=q2,则a1q=1,∵a9a10=-8,则a1q8·a1q9=-8,则q15=(q5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.
    下标和相等的等差(比)性质的推广(1)若数列{an}为等比数列,且m1+m2+…+mn=k1+k2+…+kn,则 ·…· = ·…· .(2)若数列{an}为等差数列,且m1+m2+…+mn=k1+k2+…+kn,则 + +…+ = + +…+ .
    典例 已知等差数列{an},Sn为前n项和,且a9=5,S8=16,则S11=______.
    又∵a9+a1+a8=3a6,∴a6=3,故S11=11a6=33.
    (2)已知数列{an}满足lg2an+1=1+lg2an(n∈N*),且a1+a2+a3+…+a10=1,则lg2(a101+a102+…+a110)=________.
    因为lg2an+1=1+lg2an,可得lg2an+1=lg2(2an),所以an+1=2an,所以数列{an}是以a1为首项,2为公比的等比数列,又a1+a2+…+a10=1,所以a101+a102+…+a110=(a1+a2+…+a10)×2100=2100,所以lg2(a101+a102+…+a110)=lg22100=100.
    命题点2 和的性质例4 (1)已知等比数列{an}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=______.
    (2)已知Sn是正项等比数列{an}的前n项和,S10=20,则S30-2S20+S10的最小值为________.
    依题意,S10,S20-S10,S30-S20成等比数列,且S10=20,不妨令其公比为q(q>0),则S20-S10=20q,S30-S20=20q2,
    (1)在解决与等比数列有关的问题时,要注意挖掘隐含条件,利用性质,特别是“若m+n=p+q,则aman=apaq”,可以减少运算量,提高解题速度.(2)在应用等比数列的性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.
    (2)(2023·长春统考)在等比数列{an}中,q= ,S100=150,则a2+a4+a6+…+a100的值是________.
    设T1=a1+a3+a5+…+a99,T2=a2+a4+a6+…+a100,
    所以S100=T1+T2=2T2+T2=3T2=150,所以T2=a2+a4+a6+…+a100=50.
    设1,b2,b3,b4,4的公比为q,
    3.(2023·济宁模拟)在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n等于A.5   B.6   C.7   D.8
    ∵a1=2,an+1=2an,∴数列{an}是首项为2,公比为2的等比数列.又Sn=126,
    由{an}为等比数列,得a2a6=a3a5=6,又a3+a5=5,∴a3,a5为方程x2-5x+6=0的两个根,解得a3=2,a5=3或a3=3,a5=2,由{an}为递减数列得an>an+1,∴a3=3,a5=2,
    5.(2024·揭阳模拟)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后三天所走的里程数为A.6   B.12   C.18   D.42
    设第n(n∈N*)天走an里,其中1≤n≤6,
    6.(2023·新高考全国Ⅱ)记Sn为等比数列{an}的前n项和,若S4=-5,S6=21S2,则S8等于A.120   B.85   C.-85   D.-120
    方法一 设等比数列{an}的公比为q,首项为a1,若q=1,则S6=6a1=3×2a1=3S2,不符合题意,所以q≠1.由S4=-5,S6=21S2,
    由①可得,1+q2+q4=21,解得q2=4,
    方法二 设等比数列{an}的公比为q,因为S4=-5,S6=21S2,所以q≠-1,否则S4=0,从而S2,S4-S2,S6-S4,S8-S6成等比数列,所以(-5-S2)2=S2(21S2+5),
    当S2=-1时,S2,S4-S2,S6-S4,S8-S6,即为-1,-4,-16,S8+21,易知S8+21=-64,即S8=-85;
    S4=a1+a2+a3+a4=(a1+a2)(1+q2)=(1+q2)S2>0,与S4=-5矛盾,舍去.综上,S8=-85.
    二、多项选择题7.(2023·太原模拟)已知数列{an}是等比数列,以下结论正确的是A. 是等比数列B.若a3=2, a7=32,则a5=±8C.若a1an,所以数列{an}是递增数列,故C正确;
    8.记等比数列{an}的前n项和为Sn,前n项积为Tn,且满足a1>1,a2 022>1,a2 023

    相关课件

    2025年高考数学一轮复习-6.3-等比数列【课件】:

    这是一份2025年高考数学一轮复习-6.3-等比数列【课件】,共43页。PPT课件主要包含了3等比数列等内容,欢迎下载使用。

    广东专用2024版高考数学大一轮总复习第六章数列6.3等比数列课件:

    这是一份广东专用2024版高考数学大一轮总复习第六章数列6.3等比数列课件,共60页。PPT课件主要包含了教材梳理,常用结论,巩固强化,综合运用,拓广探索等内容,欢迎下载使用。

    新高考数学一轮复习课件 第6章 §6.3 等比数列:

    这是一份新高考数学一轮复习课件 第6章 §6.3 等比数列,共60页。PPT课件主要包含了§63等比数列,落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map