|课件下载
终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习课件 第6章 §6.3 等比数列
    立即下载
    加入资料篮
    新高考数学一轮复习课件  第6章 §6.3 等比数列01
    新高考数学一轮复习课件  第6章 §6.3 等比数列02
    新高考数学一轮复习课件  第6章 §6.3 等比数列03
    新高考数学一轮复习课件  第6章 §6.3 等比数列04
    新高考数学一轮复习课件  第6章 §6.3 等比数列05
    新高考数学一轮复习课件  第6章 §6.3 等比数列06
    新高考数学一轮复习课件  第6章 §6.3 等比数列07
    新高考数学一轮复习课件  第6章 §6.3 等比数列08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习课件 第6章 §6.3 等比数列

    展开
    这是一份新高考数学一轮复习课件 第6章 §6.3 等比数列,共60页。PPT课件主要包含了§63等比数列,落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.
    LUOSHIZHUGANZHISHI
    1.等比数列的有关概念(1)定义:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于 (不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的 ,通常用字母q表示,定义的表达式为 (n∈N*,q为非零常数).(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么 叫做a与b的等比中项,此时,G2=ab.
    2.等比数列的有关公式(1)通项公式:an= .(2)前n项和公式:Sn=___________________________3.等比数列的性质(1)通项公式的推广:an=am·qn-m(m,n∈N*).
    (2)对任意的正整数m,n,p,q,若m+n=p+q=2k,则 = .(3)若等比数列前n项和为Sn,则Sm,S2m-Sm,S3m-S2m仍成等比数列(m为偶数且q=-1除外).(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为 .
    2.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.3.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q是一个常数,它可以是任意实数.(  )(2)三个数a,b,c成等比数列的充要条件是b2=ac.(  )(3)数列{an}的通项公式是an=an,则其前n项和为Sn= .(  )(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(  )
    设等比数列的公比为q,
    2.在各项均为正数的等比数列{an}中,a1a11+2a6a8+a3a13=25,则a6+a8=___.
    ∵{an}是等比数列,且a1a11+2a6a8+a3a13=25,
    又∵an>0,∴a6+a8=5.
    3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为___________.
    1,3,9或9,3,1
    ∴这三个数为1,3,9或9,3,1.
    TANJIUHEXINTIXING
    例1 (1)(2020·全国Ⅱ)记Sn为等比数列{an}的前n项和.若a5-a3=12,a6-a4=24,则 等于A.2n-1 B.2-21-nC.2-2n-1 D.21-n-1
    由a5-a3=a1q4-a1q2=12a1=12,得a1=1.所以an=a1qn-1=2n-1,
    方法二 设等比数列{an}的公比为q,
    将q=2代入①,解得a3=4.
    设等比数列{an}的公比为q,
    1.已知数列{an}为等比数列,a2=6,6a1+a3=30,则a4=________.
    a4=a1·q3=2×33=54或a4=3×23=3×8=24.
    2.已知数列{an}为等比数列,其前n项和为Sn,若a2a6=-2a7,S3=-6,则a6等于A.-2或32 B.-2或64C.2或-32 D.2或-64
    ∵数列{an}为等比数列,a2a6=-2a7=a1a7,解得a1=-2,设数列的公比为q,S3=-6=-2-2q-2q2,解得q=-2或q=1,当q=-2时,则a6=(-2)6=64,当q=1时,则a6=-2.
    (1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n项和公式涉及对公比q的分类讨论,当q=1时,{an}的前n项和Sn=na1;当q≠1时,{an}的前n项和Sn
    跟踪训练1 (1)(2020·全国Ⅱ)数列{an}中,a1=2,am+n=aman,若ak+1+ak+2+…+ak+10=215-25,则k等于A.2 B.3 C.4 D.5
    a1=2,am+n=aman,令m=1,则an+1=a1an=2an,∴{an}是以a1=2为首项,q=2为公比的等比数列,∴an=2×2n-1=2n.又∵ak+1+ak+2+…+ak+10=215-25,
    ∴2k+1=25,∴k+1=5,∴k=4.
    (2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{an}满足a2+a4=20,a3=8.①求{an}的通项公式;
    设{an}的公比为q(q>1).
    所以{an}的通项公式为an=2n,n∈N*.
    ②求a1a2-a2a3+…+(-1)n-1anan+1.
    由于(-1)n-1anan+1=(-1)n-1×2n×2n+1=(-1)n-122n+1,故a1a2-a2a3+…+(-1)n-1anan+1=23-25+27-29+…+(-1)n-1·22n+1
    例2 已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=(1)求b1,b2,b3;
    将n=1代入得,a2=4a1,而a1=1,所以a2=4.将n=2代入得,a3=3a2,所以a3=12.从而b1=1,b2=2,b3=4.
    (2)判断数列{bn}是否为等比数列,并说明理由;
    {bn}是首项为1,公比为2的等比数列,
    又b1=1,所以{bn}是首项为1,公比为2的等比数列.
    (3)求{an}的通项公式.
    已知各项都为正数的数列{an}满足an+2=2an+1+3an.(1)证明:数列{an+an+1}为等比数列;
    an+2=2an+1+3an,所以an+2+an+1=3(an+1+an),因为{an}中各项均为正数,
    所以数列{an+an+1}是公比为3的等比数列.
    由题意知an+an+1=(a1+a2)3n-1=2×3n-1,因为an+2=2an+1+3an,所以an+2-3an+1=-(an+1-3an),a2=3a1,所以a2-3a1=0,所以an+1-3an=0,故an+1=3an,所以4an=2×3n-1,an=
    等比数列的三种常用判定方法
    (3)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
    跟踪训练2 Sn为等比数列{an}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求an及Sn;
    (2)是否存在常数λ,使得数列{Sn+λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.
    假设存在常数λ,使得数列{Sn+λ}是等比数列,∵S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13,
    例3 (1)若等比数列{an}中的a5,a2 019是方程x2-4x+3=0的两个根,则lg3a1+lg3a2+lg3a3+…+lg3a2 023等于
    由题意得a5a2 019=3,根据等比数列性质知,a1a2 023=a2a2 022=…=a1 011a1 013=a1 012a1 012=3,
    则lg3a1+lg3a2+lg3a3+…+lg3a2 023=lg3(a1a2a3…a2 023)
    (2)已知数列{an}是等比数列,Sn为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12等于A.40 B.60 C.32 D.50
    数列S3,S6-S3,S9-S6,S12-S9是等比数列,即4,8,S9-S6,S12-S9是等比数列,∴S12=4+8+16+32=60.
    设等比数列{an}的公比为q,易知q≠-1,由等比数列前n项和的性质可知S3,S6-S3,S9-S6仍成等比数列,
    又由已知得S6=3S3,∴S9-S6=4S3,∴S9=7S3,
    2.已知等比数列{an}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=_____.
    (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.
    跟踪训练3 (1)(2022·安康模拟)等比数列{an}的前n项和为Sn,若S10=1,S30=7,则S40等于A.5 B.10 C.15 D.-20
    易知等比数列{an}的前n项和Sn满足S10,S20-S10,S30-S20,S40-S30,…成等比数列.
    故S10,S20-S10,S30-S20,S40-S30,…均大于0.故(S20-S10)2=S10·(S30-S20),即(S20-1)2=1·(7-S20)⇒ -S20-6=0.因为S20>0,所以S20=3.又(S30-S20)2=(S20-S10)(S40-S30),所以(7-3)2=(3-1)(S40-7),故S40=15.
    ∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,
    KESHIJINGLIAN
    1.(2022·合肥市第六中学模拟)若等比数列{an}满足a1+a2=1,a4+a5=8,则a7等于
    2.已知等比数列{an}满足a1=1,a3·a5=4(a4-1),则a7的值为A.2 B.4 C. D.6
    3.(2022·开封模拟)等比数列{an}的前n项和为Sn=32n-1+r,则r的值为
    由等比数列前n项和的性质知,
    4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为A.6里 B.12里C.24里 D.48里
    5.(多选)设等比数列{an}的公比为q,则下列结论正确的是A.数列{anan+1}是公比为q2的等比数列B.数列{an+an+1}是公比为q的等比数列C.数列{an-an+1}是公比为q的等比数列
    对于B,当q=-1时,数列{an+an+1}的项中有0,不是等比数列;对于C,当q=1时,数列{an-an+1}的项中有0,不是等比数列;
    6.(多选)数列{an}的前n项和为Sn,若a1=1,an+1=2Sn(n∈N*),则有
    由题意,数列{an}的前n项和满足an+1=2Sn(n∈N*),当n≥2时,an=2Sn-1,两式相减,可得an+1-an=2(Sn-Sn-1)=2an,
    又S1=a1=1,适合上式,所以数列{an}的前n项和为Sn=3n-1,
    所以数列{Sn}为首项为1,公比为3的等比数列,综上可得选项ABD是正确的.
    7.(2022·嘉兴联考)已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则a1=____.
    由于S3=7,S6=63知公比q≠1,又S6=S3+q3S3,得63=7+7q3.∴q3=8,q=2.
    8.已知{an}是等比数列,且a3a5a7a9a11=243,则a7=___;若公比q= ,则a4=____.
    9.(2022·徐州模拟)已知等差数列{an}的公差为2,其前n项和Sn=pn2+2n,n∈N*.(1)求实数p的值及数列{an}的通项公式;
    又Sn=pn2+2n,n∈N*,所以p=1,a1-1=2,即a1=3,所以an=3+2(n-1)=2n+1.
    因为b3=a1=3,b4=a2+4=9,所以q=3,所以bn=b3·qn-3=3n-2,
    10.(2022·威海模拟)记数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+1.设bn=an+1-2an.(1)求证:数列{bn}为等比数列;
    由Sn+1=4an+1,得Sn=4an-1+1(n≥2,n∈N*),两式相减得an+1=4an-4an-1(n≥2),所以an+1-2an=2(an-2an-1),
    又a1=1,S2=4a1+1,故a2=4,a2-2a1=2=b1≠0,所以数列{bn}为首项与公比均为2的等比数列.
    (2)设cn=|bn-100|,Tn为数列{cn}的前n项和.求T10.
    由(1)可得bn=2·2n-1=2n,
    所以T10=600-(21+22+…+26)+27+28+29+210-400
    =200+2+28+29+210=1 994.
    11.(多选)(2022·滨州模拟)已知Sn是数列{an}的前n项和,且a1=a2=1,an=an-1+2an-2(n≥3),则下列结论正确的是
    因为an=an-1+2an-2(n≥3),所以an+an-1=2an-1+2an-2=2(an-1+an-2),又a1+a2=2≠0,所以{an+an+1}是等比数列,A正确;同理an-2an-1=an-1+2an-2-2an-1=-an-1+2an-2=-(an-1-2an-2),而a2-2a1=-1,所以{an+1-2an}是等比数列,B正确;
    由A知{an+an-1}是等比数列,且公比为2,因此数列a1+a2,a3+a4,a5+a6,…仍然是等比数列,公比为4,
    12.(多选)(2022·黄冈模拟)设等比数列{an}的公比为q,其前n项和为Sn,前n项积为Tn,并且满足条件a1>1,a7·a8>1, <0.则下列结论正确的是A.01C.Sn的最大值为S9 D.Tn的最大值为T7
    ∴a7>1,0∵a1>1,01,0由题意得,T2 015=T2 021=T2 015·a2 016a2 017a2 018a2 019a2 020a2 021,所以a2 016a2 017a2 018a2 019a2 020a2 021=1,根据等比数列的性质,可得a2 016a2 021=a2 017a2 020=a2 018a2 019=1,设等比数列的公比为q,
    14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为 ,则其最小正方形的边长为_____.
    现已知共含有1 023个正方形,则有1+2+…+2n-1=1 023,
    15.(多选)在数列{an}中,n∈N*,若 =k(k为常数),则称{an}为“等差比数列”,下列关于“等差比数列”的判断正确的是A.k不可能为0B.等差数列一定是“等差比数列”C.等比数列一定是“等差比数列”D.“等差比数列”中可以有无数项为0
    对于A,k不可能为0,正确;对于B,当an=1时,{an}为等差数列,但不是“等差比数列”,错误;对于C,当等比数列的公比q=1时,an+1-an=0,分式无意义,所以{an}不是“等差比数列”,错误;对于D,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.
    16.已知等比数列{an}的公比q>1,a1=2,且a1,a2,a3-8成等差数列,数列{anbn}的前n项和为(1)分别求出数列{an}和{bn}的通项公式;
    因为a1=2,且a1,a2,a3-8成等差数列,所以2a2=a1+a3-8,即2a1q=a1+a1q2-8,所以q2-2q-3=0,所以q=3或q=-1,又q>1,所以q=3,所以an=2·3n-1(n∈N*).
    两式相减,得anbn=2n·3n-1(n≥2),因为an=2·3n-1,所以bn=n(n≥2),当n=1时,由a1b1=2及a1=2,得b1=1(符合上式),所以bn=n(n∈N*).
    相关课件

    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个,aGb,a1qn-1,aman=apaq,S2n-Sn,S3n-S2n,N=M+3等内容,欢迎下载使用。

    2024年高考数学一轮复习(新高考版) 第6章 §6.3 等比数列课件PPT: 这是一份2024年高考数学一轮复习(新高考版) 第6章 §6.3 等比数列课件PPT,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个,aGb,a1qn-1,aman=apaq,S2n-Sn,S3n-S2n,N=M+3等内容,欢迎下载使用。

    高考复习 6.3 等比数列课件PPT: 这是一份高考复习 6.3 等比数列课件PPT,共39页。PPT课件主要包含了同一个常数,a1qn-1,na1,am·an,答案B,答案A,答案D,题后师说,答案C,lg2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习课件 第6章 §6.3 等比数列
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map