|试卷下载
搜索
    上传资料 赚现金
    2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)
    立即下载
    加入资料篮
    2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)01
    2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)02
    2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)03
    还剩14页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)

    展开
    这是一份2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1.下列二次根式中,是最简二次根式的是( )
    A. 0.3B. 12C. 13D. 6
    2.平行四边形ABCD中,∠A=50∘,则∠C的度数是( )
    A. 40∘B. 80∘C. 50∘D. 130∘
    3.下面是三条线段的长,能够围成直角三角形的是( )
    A. 1,2,3B. 3,4,5C. 5,6,7D. 12,13,18
    4.在下列各图象中,y是x的函数有( )
    A. 1个B. 2个C. 3个D. 4个
    5.正比例函数y=−45x的图象经过的象限是( )
    A. 第一、三象限B. 第一、二象限C. 第二、四象限D. 第三、四象限
    6.如图所示,增加下列一个条件可以使平行四边形ABCD成为矩形的是( )
    A. ∠BAD=∠BCD
    B. AC⊥BD
    C. ∠BAD=90∘
    D. AB=BC
    7.如图,在菱形ABCD中,连接AC,BD,若∠1=25∘,则∠2的度数为( )
    A. 25∘
    B. 65∘
    C. 75∘
    D. 85∘
    8.一次函数y=−3x+1的图象一定经过点( )
    A. (2,−5)B. (1,0)C. (−2,3)D. (0,−1)
    9.共同富裕的要求是:在消除两极分化和贫穷基础上实现普遍富裕.下列有关个人收入的统计量中,最能体现共同富裕要求的是( )
    A. 平均数小,方差大B. 平均数小,方差小C. 平均数大,方差小D. 平均数大,方差大
    10.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是( )
    A. B. C. D.
    11.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为( )
    A. 12m
    B. 13m
    C. 16m
    D. 17m
    12.如图,在正方形ABCD和正方形CEFG中,点G在CD上,BC=6,CE=3,H是AF的中点,那么CH的长为( )
    A. 3 5
    B. 2 5
    C. 3 10
    D. 32 10
    二、填空题:本题共4小题,每小题3分,共12分。
    13.计算:( 4)2=______.
    14.一组数据5,−2,4,x,3,−1,若3是这组数据的众数,则这组数据的平均数是______.
    15.如图,一次函数y=kx+b的图象经过点(0,2),则不等式kx+b>2的解集为______.
    16.如图,矩形ABCD的对角线AC,BD相交于点O,∠AOB=60∘,AB=4,M为AB的中点,则OM的长为______.
    三、解答题:本题共8小题,共72分。解答应写出文字说明,证明过程或演算步骤。
    17.(本小题6分)
    (1) 3× 6+ 24÷ 3− 50;
    (2)( 5+ 3)( 5− 3).
    18.(本小题8分)
    如图所示,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90∘,求这块地的面积.
    19.(本小题9分)
    某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件数量y(个)与生产时间t(h)之间的关系如图所示.
    (1)根据图象填空:
    ①甲、乙中,前2个小时甲每小时生产零件______个,乙每小时生产零件______个;______(甲、乙)先完成40个零件的生产任务;在生产过程中______(甲、乙)因机器故障停止生产______ h;
    ②当t=______时,甲、乙生产的零件个数相等.
    (2)谁在哪一段时间内的生产速度最快?求该段时间内他每小时生产零件的个数.
    20.(本小题9分)
    在一次体操比赛中,6个裁判员对某一运动员的打分数据(动作完成分)如下:对打分数据有以下两种处理方式:
    方式一:不去掉任何数据,用6个原始数据进行统计:
    方式二:去掉一个最高分和一个最低分,用剩余的4个数据进行统计:
    (1)a=______,b=______;c=______;
    (2)你认为把哪种方式统计出的平均分作为该运动员的最终得分更合理?写出你的判定并说明理由.
    21.(本小题9分)
    已知一次函数的图象经过A(−2,0),B(1,6)两点.
    (1)求这个一次函数的解析式;
    (2)试判断点P(−1,1)是否在这个一次函数的图象上;
    (3)求此函数与x轴、y轴围成的三角形的面积.
    22.(本小题10分)
    如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60∘,点G是CD的中点,点E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.
    (1)求证:四边形CEDF是平行四边形;
    (2)①直接写出:当AE=______ cm时,四边形CEDF是菱形(不需要说明理由);
    ②当AE=______ cm时,四边形CEDF是矩形,请说明理由.
    23.(本小题10分)
    某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元。
    (1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围;
    (2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。
    24.(本小题11分)
    如图,在菱形ABCD中,E,F分别为AD,AB上的点,且AE=AF,连接并延长EF,CB延长线交于点G,连接BD.
    (1)求证:四边形EGBD是平行四边形.
    (2)连接AG,若∠FGB=30∘,GB=AE=6,求AG的长.
    答案和解析
    1.【答案】D
    【解析】解:A、 0.3= 310= 3010,故A不符合题意;
    B、 12=2 3,故B不符合题意;
    C、 13= 33,故C不符合题意;
    D、 6是最简二次根式,故D符合题意;
    故选:D.
    根据最简二次根式的定义,逐一判断即可解答.
    本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.
    2.【答案】C
    【解析】解:∵四边形ABCD是平行四边形,
    ∴∠A=∠C=50∘,
    故选:C.
    根据平行四边形的性质求解即可.
    本题考查平行四边形的性质,解题的关键是掌握相关知识的灵活运用.
    3.【答案】B
    【解析】解:A、∵1+2=3,∴1,2,3不能构成三角形,故本选项错误;
    B、∵32+42=52,∴3,4,5能构成直角三角形,故本选项正确;
    C、∵52+62≠72,∴5,6,7不能构成直角三角形,故本选项错误;
    D、∵122+132≠182,∴12,13,18不能构成直角三角形,故本选项错误;
    故选:B.
    根据勾股定理逆定理及三角形三边关系判断求解即可.
    本题考查了勾股定理逆定理、三角形三边关系等知识,熟记勾股定理逆定理是解题的关键.
    4.【答案】C
    【解析】解:第一个、第二个、第三个图象y都是x的函数,第四个不是,共3个,
    故选:C.
    利用函数定义进行解答即可.
    此题主要考查了函数概念,关键是掌握设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数.
    5.【答案】C
    【解析】解:∵k=−45<0,
    ∴正比例函数y=−45x的图象经过第二、四象限,
    故选:C.
    根据正比例函数的性质即可得到结论.
    本题主要考查了正比例函数的性质,掌握当k<0时,正比例函数y=kx(k≠0)的图象经过第二、四象限是解决问题的关键.
    6.【答案】C
    【解析】解:A∵四边形ABCD是平行四边形,
    ∴∠BAD=∠BCD,故选项A不符合题意;
    B、∵四边形ABCD是平行四边形,AC⊥BD,
    ∴四边形ABCD是菱形,故选项B不符合题意;
    C、∵四边形ABCD是平行四边形,∠BAD=90∘,
    ∴四边形ABCD是矩形,故选项C符合题意;
    D、∵四边形ABCD是平行四边形,AB=BC,
    ∴四边形ABCD是菱形,故选项D不符合题意;
    故选:C.
    由矩形的判定、菱形的判定和平行四边形的性质分别对各个选项进行判断即可.
    本题考查了矩形的判定、菱形的判定以及平行四边形的性质等知识,熟练掌握矩形的判定和菱形的判定是解题的关键.
    7.【答案】B
    【解析】解:∵四边形ABCD是菱形,
    ∴AC⊥DB,∠2=∠ABD,
    ∵∠ABD=180∘−90∘−25∘=65∘,
    ∴∠2=65∘,
    故选:B.
    根据菱形的性质可得AC⊥DB,∠2=∠ABD,再根据三角形内角和定理求解即可.
    本题考查菱形的性质、三角形内角和定理,解题的关键是掌握菱形的性质.
    8.【答案】A
    【解析】解:A、当x=2时,y=−3×2+1=−5,则点(2,−5)在直线y=−3x+1上,所以A选项正确;
    B、当x=1时,y=−3×1+1=−2,则点(1,0)不在直线y=−3x+1上,所以B选项错误;
    C、当x=−2时,y=−3×(−2)+1=7,则点(−2,3)不在直线y=−3x+1上,所以C选项错误;
    D、当x=0时,y=−3×0+1=1,则点(0,−1)不在直线y=−3x+1上,所以D选项错误.
    故选A.
    把四个点的坐标分别代入y=−3x+1,若满足解析式,则可判断此点在直线y=−3x+1上.
    本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线;直线上任意一点的坐标都满足函数关系式y=kx+b.
    9.【答案】C
    【解析】解:人均收入平均数大,方差小,最能体现共同富裕要求.
    故选:C.
    根据算术平均数和方差的定义解答即可.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    10.【答案】C
    【解析】解:∵一次函数y=kx+b,y随着x的增大而减小,
    ∴k<0,
    ∴一次函数y=kx+b的图象经过第二、四象限;
    ∵kb<0,
    ∴b>0,
    ∴图象与y轴的交点在x轴上方,
    ∴一次函数y=kx+b的图象经过第一、二、四象限.
    故选:C.
    根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴上方.
    本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
    11.【答案】D
    【解析】解:如图,过点C作CB⊥AD,设旗杆高度为x m,则AC=AD=xm,AB=(x−2)m,BC=8m,
    在Rt△ABC中,AB2+BC2=AC2,即(x−2)2+82=x2,
    解得:x=17,
    即旗杆的高度为17米.
    故选:D.
    根据题意画出示意图,设旗杆高度为x m ,可得AC=AD=xm,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.
    本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.
    12.【答案】D
    【解析】解:连接AC、CF,如图,
    ∵四边形ABCD和四边形CEFG都是正方形,BC=6,CE=3,
    ∴∠ACD=45∘,∠FCG=45∘,
    ∴∠ACF=90∘,
    ∴AC= 2AC=6 2,CF= 2CE=3 2,
    在Rt△ACF中,AF= (6 2)2+(3 2)2=3 10,
    ∵H是AF的中点,
    ∴CH=12AF=3 102,
    故选:D.
    连接AC、CF,根据正方形的性质可得∠ACD=45∘,∠FCG=45∘,利用勾股定理求得AC=4 2,CF=2 2,则∠ACF=90∘,再利用勾股定理求得AF=2 10,再根据直角三角形的性质求解即可.
    本题考查正方形的性质、勾股定理、直角三角形斜边上的中线,熟练掌握正方形的性质是解题的关键.
    13.【答案】4
    【解析】解:原式=4,
    故答案为:4.
    利用二次根式的性质进行计算即可.
    此题主要考查了二次根式乘法与性质,关键是掌握( a)2=a(a≥0).
    14.【答案】2
    【解析】解:∵这组数据的众数为3,
    ∴x=3,
    则平均数为:5−2+4+3+3−16=2.
    故答案为:2.
    根据众数和平均数的概念求解.
    本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    15.【答案】x<0
    【解析】解:∵一次函数y=kx+b的图象经过点(0,2),
    ∴当x=0时,kx+b=2,
    由图象可知,不等式kx+b>2的解集为x<0,
    故答案为:x<0.
    根据一次函数的图象即可确定不等式kx+b>2的解集.
    本题考查了一次函数与一元一次不等式,熟练掌握一次函数图象上点的坐标特征是解题的关键.
    16.【答案】2 3
    【解析】解:∵四边形ABCD是矩形,
    ∴AO=BO,
    又∵∠AOB=60∘,
    ∴△AOB是等边三角形,
    ∴AO=BO=AB=4,
    ∵M为AB的中点,
    ∴AM=12AB=2,OM⊥AB,
    ∴OM= AO2−AM2= 42−22=2 3,
    故答案为:2 3.
    根据矩形的性质可得AO=BO,再根据等边三角形的性质与判定可得AO=BO=AB=4,从而可得AM=12AB=2,OM⊥AB,再利用勾股定理求解即可.
    本题考查矩形的性质、等边三角形的判定与性质、勾股定理,熟练掌握矩形的性质和等边三角形的判定与性质是解题的关键.
    17.【答案】解:(1)原式= 18+ 8− 50
    =3 2+2 2−5 2
    =0;
    (2)原式=( 5)2−( 3)2
    =5−3
    =2.
    【解析】(1)先计算二次根式的乘除法,再把每项二次根式化成最简二次根式,最后计算加减即可;
    (2)利用平方差公式计算即可.
    本题考查二次根式的混合运算、平方差公式,熟练掌握二次根式性质是关键.
    18.【答案】解:连接AC,
    ∵∠ADC=90∘,AD=4米,CD=3米,
    ∴AC= CD2+AD2= 32+42=5(米),
    ∵AB=13米,BC=12米,
    ∴AC2+BC2=52+122=169,AB2=132=169,
    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,
    ∴∠ACB=90∘,
    ∴这块地的面积=△ABC的面积−△ADC的面积
    =12AC⋅BC−12CD⋅AD
    =12×5×12−12×3×4
    =30−6
    =24(平方米),
    ∴这块地的面积为24平方米.
    【解析】连接AC,在Rt△ACD中,利用勾股定理求出AC的长,然后利用勾股定理的逆定理证明△ABC是直角三角形,从而可得∠ACB=90∘,最后根据这块地的面积=△ABC的面积−△ADC的面积,进行计算即可解答.
    本题考查了勾股定理的逆定理,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
    19.【答案】5 2 甲 甲 2 3或5.5
    【解析】解:(1)①由图可得,前2个小时甲每小时生产零件为10÷2=5个,乙每小时生产零件为4÷2=2个,
    由图可得,甲先完成40个零件的生产任务,在生产过程中,甲因机器故障停止生产4−2=2h,
    故答案为:5,2,甲,甲,2;
    ②由图可得,当t=3或5.5时,甲、乙生产的零件个数相等,
    故答案为:3或5.5;
    (2)由图可得,甲在4−7时生产速度最快,
    ∵40−107−4=10,
    ∴甲在这段时间内每小时生产零件10个.
    (1)①根据前2个小时生产总个数除以时间分别求得前2个小时甲、乙每小时生产零件即可;②观察图形求解即可;
    (2)观察图形可知,甲在4−7时的直线斜率最大,即生产速度最快即可求解.
    本题考查从函数图象,正确记忆相关知识点是解题关键.
    20.【答案】
    【解析】解:(1)方式一:不去掉任何数据,这组数据的中位数为:a=8.8+8.82=8.8;
    方式二:去掉一个最高分和一个最低分,
    平均数为b=14×(8.8+8.8+8.9+8.7)=8.8,
    方差为:c=14×[(8.8−8.8)2+(8.8−8.8)2+(8.9−8.8)2+(8.7−8.8)2]=0.005,
    故答案为:8.8,8.8,0.005;
    (3)去掉一个最高分和一个最低分,用剩余的4个数据的平均分进行统计更合理,
    理由:这样可以减少极端值对数据的影响.
    (1)依据中位数、平均数、方差的定义即可求解;
    (2)去掉一个最高分和一个最低分统计平均分的方法更合理,这样可以减少极端值对数据的影响.
    本题主要考查了平均数和方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    21.【答案】解:(1)设这个一次函数的解析式为y=kx+b,
    将A(−2,0),B(1,6)代入,得−2k+b=0k+b=6,
    解得k=2b=4,
    故这个一次函数的解析式为y=2x+4,
    (2)当x=−1时,y=2x+4=2×(−1)+4=2≠1,
    ∴点P(−1,1)不在这个一次函数的图象上;
    (3)当x=0时,y=2×0+4=4,则一次函数与y轴的交点坐标为(0,4),
    当y=0时,2x+4=0,解得x=−2,则一次函数与x轴的交点坐标为(−2,0),
    ∴此函数图象与x轴、y轴围成的三角形的面积为:12×4×|−2|=12×4×2=4.
    【解析】(1)利用待定系数法求解;
    (2)将x=−1代入(1)中求出的解析式,判断y值是否为1即可;
    (3)根据解析式求出一次函数图象与坐标轴的交点坐标,即可求解.
    本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,熟练掌握一次函数性质是关键.
    22.【答案】4 7
    【解析】(1)证明:∵四边形ABCD是平行四边形,
    ∴BC//AD,
    ∴∠FCG=∠EDG,
    ∵G是CD的中点,
    ∴CG=DG,
    在△CFG和△DEG中,
    ∠FCG=∠EDGCG=DG∠CGF=∠DGE,
    ∴△CFG和△DEG(ASA),
    ∴FG=EG,
    又∵CG=DG,
    ∴四边形CEDF是平行四边形.
    (2)解:①当AE=4cm时,四边形CEDF是菱形,理由如下:
    ∵四边形ABCD是平行四边形,
    ∴AD=10cm,CD=AB=6cm,∠CDE=∠B=60∘,
    ∵AE=4cm,
    ∴DE=AD−AE=6cm,
    ∴DE=CD,
    ∴△CDE是等边三角形,
    ∴CE=DE,
    ∵四边形CEDF是平行四边形,
    ∴平行四边形CEDF是菱形,
    故答案为:4;
    ②当AE=7时,平行四边形CEDF是矩形,理由如下:
    如图,过A作AM⊥BC于M,
    ∵∠B=60∘,AB=6cm,
    ∴BM=12AB=3cm,
    ∵AE=7cm,
    ∴DE=AD−AE=3cm=BM,
    在△MBA和△EDC中,
    BM=DE∠B=∠CDAAB=CD,
    ∴△MBA≌△EDC(SAS),
    ∴∠CED=∠AMB=90∘,
    ∵四边形CEDF是平行四边形,
    ∴平行四边形CEDF是矩形,
    故答案为:7.
    (1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;
    (2)①证△CDE是等边三角形,推出CE=DE,再根据菱形的判定推出即可.
    ②求出△MBA≌△EDC,推出∠CED=∠AMB=90∘,再根据矩形的判定推出即可.
    本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的判定与性质,全等三角形的判定与性质等知识,熟练掌握矩形的判定和菱形的判定是解题的关键.
    23.【答案】解:(1)甲方案:每千克9元,由基地送货上门,
    根据题意得:y=9x(x≥3000),
    乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元,
    根据题意得:y=8x+5000(x≥3000).
    (2)根据题意可得:当9x=8x+5000时,
    x=5000,
    当购买5000千克时两种购买方案付款相同,
    当9x>8x+5000时,x>5000,
    ∴当购买超过5000千克时甲方案付款多,乙付款少,
    当9x<8x+5000时,x<5000,
    ∴当购买数量x在3000≤x<5000甲方案付款少,乙付款多.
    【解析】此题主要考查了一次函数的应用以及分类讨论的思想,得出两函数的解析式利用不等式即可得出付费的多少.
    (1)根据甲,乙两种销售方案,分别得出两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,列出即可;
    (2)根据分析9x与8x+5000的大小关系,得出不等式的解集可以得出购买方案付款的多少问题.
    24.【答案】(1)证明:∵四边形ABCD是菱形,
    ∴AD//BC,AD=AB,
    ∴ED//BC,∠AEF=∠G,
    ∵AE=AF,
    ∴∠AEF=∠AFE,
    ∴∠G=∠AFE,
    又∵∠AFE=∠GFB,
    ∴∠G=∠GFB,
    ∴GB=FB,
    ∵AD=AB,AE=AF,
    ∴ED=BF,
    ∴GB=ED,
    ∴四边形EGBD是平行四边形.
    (2)解:过点A作AH⊥BC于点H,
    由(1)可得,GE//BD,
    ∵∠FGB=30∘,GE//BD,
    ∴∠DBC=30∘,
    ∴∠ABH=2∠DBC=60∘,
    ∵GB=AE=6,
    ∴AB=AD=12,
    ∵∠ABH=90∘,
    ∴∠BAH=30∘,
    ∴BH=12AB=6,
    ∴GH=12,
    在Rt△ABH中,AH= 122−62=6 3,
    在Rt△AGH中,AG= (6 3)2+122=6 7.
    【解析】(1)根据菱形的性质得AD//BC,AD=AB,由平行线的性质可得ED//BC,∠AEF=∠G,再由等腰三角形的性质和对顶角的性质可得∠G=∠GFB,再根据等角对等边得GB=FB,从而可得GB=ED,再根据平行四边形的判定即可得证;
    (2)过点A作AH⊥BC于点H,由平行线的性质得∠DBC=30∘,再根据菱形的性质可得∠ABH=60∘,由直角三角形的性质得BH=12AB=6,利用勾股定理求得AH=6 3,在Rt△AGH中,利用勾股定理求解即可.
    本题考查菱形的性质、平行四边形的性质与判定、直角三角形的性质、勾股定理、等腰三角形的判定与性质,熟练掌握菱形的性质和平行四边形的性质与判定是解题的关键.平均分
    中位数
    方差
    8 9
    a
    0.107
    平均分
    中位数
    方差
    b
    8.8
    c
    相关试卷

    2023-2024学年河北省廊坊市安次区八年级(下)月考数学试卷(含解析): 这是一份2023-2024学年河北省廊坊市安次区八年级(下)月考数学试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河北省廊坊市香河县八年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年河北省廊坊市香河县八年级(上)期末数学试卷(含详细答案解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年河北省廊坊市安次区八年级(上)期末数学试卷(含详细答案解析): 这是一份2023-2024学年河北省廊坊市安次区八年级(上)期末数学试卷(含详细答案解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023-2024学年河北省廊坊市安次区八年级(下)期末数学试卷(含详细答案解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map