苏科版八年级下册第9章 中心对称图形——平行四边形9.3 平行四边形习题
展开
这是一份苏科版八年级下册第9章 中心对称图形——平行四边形9.3 平行四边形习题,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题(共10小题,每小题3分,共计30分)
1.如图,将绕点顺时针旋转60°得到,若,则等于( )
A.2cmB.3cmC.4cmD.5cm
2.京剧脸谱、剪纸等图案蕴含着简洁美对称美,下面选取的图片中既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
3.等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是( )
A.2个B.3个C.4个D.5个
4.如图,平行四边形ABCD中,两对角线交于点O,AB⊥AC,AD=5cm,OC=2cm,则对角线BD的长为( )
A.cmB.8cmC.3cmD.cm
5.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,若△CDE的周长为8,则▱ABCD的周长为( )
A.8B.10C.16D.20
6.如图,折叠矩形ABCD,使点D落在点F处,已知AB=8,BC=10,则EC的长( )
A.5cmB.2cmC.3cmD.4cm
7.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较短的对角线长度是( )
A.B.C.D.
8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中,,,,则( )
A.54B.52C.48D.36
9.已知,如图长方形ABCD中,AB=3,AD=9,将此长方形折叠,使点B与点D重合,折痕为EF,则BEF的面积为( )
A.6B.7.5C.12D.15
10.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为( )
A.32B.16C.8D.4
二、填空题(共5小题,每小题4分,共计20分)
11.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为_____m.
12.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为,则图中阴影部分的面积为_____.
13.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
14.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
15.如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=___厘米.
三、解答题(共5小题,每小题10分,共计50分)
16.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
17.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCF 的面积.
18.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM(2)当AE=1时,求EF的长.
19.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;
(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.
20.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF,
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为: .
②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE,若已知AB=2,CD=BC,请求出GE的长.
答案
一、单选题
1.B
【分析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.
【详解】
解:∵△ABC绕点A顺时针旋转60°得到△AED,
∴AB=AE,∠BAE=60°,
∴△AEB是等边三角形,
∴BE=AB,
∵AB=3cm,
∴BE=3cm.
故选:B.
2.D
【分析】
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;根据中心对称图形与轴对称图形的概念依次判断各个选项,进而得出答案.
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.是轴对称图形,不是中心对称图形,故不符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.既是轴对称图形又是中心对称图形,故符合题意.
故选D.
3.A
【分析】
根据轴对称图形与中心对称图形的概念进行判断.
【详解】
解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;
等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;
共2个既是轴对称图形又是中心对称图形.
故选:A.
4.D
【分析】
利用平行四边形的性质和勾股定理易求的长,进而可求出的长.
【详解】
解:的对角线与相交于点,
,,,
,
,
,
在中,由勾股定理得:,
,
故选:D.
5.C
【分析】
根据线段垂直平分线的判定和性质,可得AE=CE,又由CE+DE+CD=8,即AD+CD=8,继而可得ABCD的周长.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,AB=CD,AD=BC,
∵OE⊥AC,
∴OE是线段AC的垂直平分线,
∴AE=CE,
∵△CDE的周长为8,
∴CE+DE+CD=8,即AD+CD =8,
∴平行四边形ABCD的周长为2(AD+CD)=16.
故选:C.
6.C
【分析】
根据矩形及折叠的性质可得,,在Rt∆ABF中,利用勾股定理得出,,在Rt∆ECF中,设,则,继续利用勾股定理求解即可得.
【详解】
解:∵四边形ABCD为矩形,且经过折叠,,,
∴,,
在Rt∆ABF中,
,
,
在Rt∆ECF中,设,则,
∴,
∴即,
解得:,
即,
故选:C.
7.D
【分析】
根据已知可求得菱形的边长及其两内角的度数,得出较短的对角线与菱形两边围成的三角形是等边三角形,即可得出结果.
【详解】
如图所示:
∵菱形的周长为20cm,
∴菱形的边长为5cm,
∵两邻角之比为1:2,
∴较小角为60°,
∴,
∵AB=5cm,,
∴为等边三角形,
∴ cm,
∴较短的对角线为5cm,
故选D.
8.A
【分析】
根据正方形的性质和勾股定理的几何意义解答即可.
【详解】
解:如图,
根据勾股定理的几何意义,可知:
S=SF+SG
=SA+SB+SC+SD
=20+16+12+6=54;
即S=54;
故选:A.
9.B
【分析】
根据翻折的性质可得,BE=DE,设AE=x,则ED=BE=9−x,在直角△ABE中,根据勾股定理可得32+x2=(9−x)2,即可得到BE的长度,由翻折性质可得,∠BEF=∠FED,由矩形的性质可得∠FED=∠BFE,即可得出△BEF是等腰三角形,BE=BF,即可得出答案.
【详解】
解:设AE=x,则ED=BE=9−x,
根据勾股定理可得,32+x2=(9−x)2,
解得:x=4,
由翻折性质可得,∠BEF=∠FED,
∵ADBC,
∴∠FED=∠BFE,
∴∠BEF=∠BFE,
∴BE=BF=5,
∴S△BFE=×5×3=7.5.
故选:B.
10.C
【分析】
根据等腰三角形的性质和中位线的性质求解即可.
【详解】
∵AD=AC
∴是等腰三角形
∵AE⊥CD
∴
∴E是CD的中点
∵F是BC的中点
∴EF是△BCD的中位线
∴
故答案为:C.
二、填空题
11.1
【分析】
根据角平分线的概念、平行线的性质及等腰三角形的性质,可分别推出AE=AB,DF=DC,进而推出EF=AE+DF -AD.
【详解】
∵四边形ABCD是平行四边形,
∴∠AEB=∠EBC,AD=BC=5cm,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
则∠ABE=∠AEB,
∴AB=AE=3cm,
同理可证:DF=DC=AB=3cm,
则EF=AE+FD﹣AD=3+3﹣5=1cm.
故答案为:1.
12.
【分析】
先证得△ADF△BAE,再利用等量代换即可求得阴影部分的面积等于△AOD的面积.
【详解】
正方形ABCD中,
∠DAF=∠ABE=90,AD=AB,
∵AE⊥DF,
∴∠DOA=∠DAF =90,
∴∠DAO+∠ADF =∠DAO +∠FAO =90,
∴∠ADF =∠FAO,
在△ADF和△BAE中,
,
∴△ADF△BAE,
∴,
∴,
∴.
故答案为:.
13.(﹣5,4).
【分析】
首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
【详解】
由题知A(3,0),B(-2,0),D在y轴上,
∴AB=3-(-2)=5,OA=3,BO=2,
由菱形邻边相等可得AD=AB=5,
在Rt△AOD中,由勾股定理得:
OD==4,
由菱形对边相等且平行得CD=BA=5,
所以C(-5,4).
故答案为(﹣5,4).
14.55.
【详解】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
15.3
【详解】
试题分析:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.
又∵AC+BD=24厘米,∴OA+OB=12厘米.
∵△OAB的周长是18厘米,∴AB=6厘米.
∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线.
∴EF=AB=3厘米.
三、解答题
16.
(1)证明:∵四边形ABCD是矩形,O是BD的中点,
∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,
∴∠OBE=∠ODF,
在△BOE和△DOF中,
∴△BOE≌△DOF(ASA),
∴EO=FO,
∴四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,BD⊥EF,
设BE=x,则 DE=x,AE=6-x,
在Rt△ADE中,DE2=AD2+AE2,
∴x2=42+(6-x)2,
解得:x= ,
∵BD= =2,
∴OB=BD=,
∵BD⊥EF,
∴EO==,
∴EF=2EO=.
17.
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=10.
18.
(1)∵△DAE逆时针旋转90°得到△DCM
∴DE=DM ∠EDM=90°
∴∠EDF + ∠FDM=90°
∵∠EDF=45°
∴∠FDM =∠EDM=45°
∵ DF= DF
∴△DEF≌△DMF
∴ EF=MF …
(2) 设EF=x ∵AE=CM=1
∴ BF=BM -MF=BM -EF=4-x
∵ EB=2
在Rt△EBF中,由勾股定理得
即
解之,得
19.
(1)证明:如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGA+∠DGA=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°.
(3)解:延长AB、FG交于H,连接HD.
∵AD∥GF,AB∥DF,
∴四边形AHFD为平行四边形
∵∠ABC=120°,AF平分∠BAD
∴∠DAF=30°,∠ADC=120°,∠DFA=30°
∴△DAF为等腰三角形
∴AD=DF,
∴CE=CF,
∴平行四边形AHFD为菱形
∴△ADH,△DHF为全等的等边三角形
∴DH=DF,∠BHD=∠GFD=60°
∵FG=CE,CE=CF,CF=BH,
∴BH=GF
在△BHD与△GFD中,
∵ ,
∴△BHD≌△GFD,
∴∠BDH=∠GDF
∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.
20.解:(1)①正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,AD=AF∠BAD=∠CAFAB=AC,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=90°,即CF⊥BD;
②△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD;
(2)成立,
∵正方形ADEF中,AD=AF,
∵∠BAC=∠DAF=90°,
∴∠BAD=∠CAF,
在△DAB与△FAC中,AD=AF∠BAD=∠CAFAB=AC,
∴△DAB≌△FAC,
∴∠B=∠ACF,CF=BD
∴∠ACB+∠ACF=90°,即CF⊥BD;
∵BC=BD+CD,
∴BC=CF+CD;
(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,
∵∠BAC=90°,AB=AC,
∴BC=2AB=4,AH=12BC=2,
∴CD=14BC=1,CH=12BC=2,
∴DH=3,
由(2)证得BC⊥CF,CF=BD=5,
∵四边形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四边形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADC=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90°,
∴∠ADH=∠DEM,
在△ADH与△DEM中,∠ADH=∠DEM∠AHD=∠DMEAD=DE,
∴△ADH≌△DEM,
∴EM=DH=3,DM=AH=2,
∴CN=EM=3,EN=CM=3,
∵∠ABC=45°,
∴∠BGC=45°,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
∴EG=GN2+EN2=10.
相关试卷
这是一份【同步讲义】苏科版数学八年级下册:第九章 中心对称图形-平行四边形(题型过关),文件包含第九章中心对称图形-平行四边形原卷版docx、第九章中心对称图形-平行四边形解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
这是一份初中数学苏科版八年级下册9.3 平行四边形课后复习题,共20页。
这是一份初中数学苏科版八年级下册9.3 平行四边形同步训练题,共8页。试卷主要包含了选择题等内容,欢迎下载使用。