终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      新高考数学一轮复习讲义第10章 §10.3 二项式定理(原卷版).doc
    • 讲义
      新高考数学一轮复习讲义第10章 §10.3 二项式定理(含解析).doc
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)01
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)02
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)03
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)01
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)02
    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)

    展开
    这是一份新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第10章§103二项式定理原卷版doc、新高考数学一轮复习讲义第10章§103二项式定理含解析doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。


    知识梳理
    1.二项式定理
    2.二项式系数的性质
    (1)对称性:与首末两端“等距离”的两个二项式系数相等.
    (2)增减性与最大值:当n是偶数时,中间的一项 SKIPIF 1 < 0 取得最大值;当n是奇数时,中间的两项 SKIPIF 1 < 0 与 SKIPIF 1 < 0 相等,且同时取得最大值.
    (3)各二项式系数的和:(a+b)n的展开式的各二项式系数的和为Ceq \\al(0,n)+Ceq \\al(1,n)+Ceq \\al(2,n)+…+Ceq \\al(n,n)=2n.
    常用结论
    1.Ceq \\al(0,n)+Ceq \\al(2,n)+Ceq \\al(4,n)+…=Ceq \\al(1,n)+Ceq \\al(3,n)+Ceq \\al(5,n)+…=2n-1.
    2.Ceq \\al(m,n+1)=Ceq \\al(m-1,n)+Ceq \\al(m,n).
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)Ceq \\al(k,n)an-kbk是(a+b)n的展开式中的第k项.( )
    (2)(a+b)n的展开式中每一项的二项式系数与a,b无关.( )
    (3)通项公式Tk+1=Ceq \\al(k,n)an-kbk中的a和b不能互换.( )
    (4)二项式的展开式中的系数最大项与二项式系数最大项是相同的.( )
    教材改编题
    1.eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)-\r(x)))10的展开式中x2的系数等于( )
    A.45 B.20 C.-30 D.-90
    2.已知Ceq \\al(0,n)+2Ceq \\al(1,n)+22Ceq \\al(2,n)+23Ceq \\al(3,n)+…+2nCeq \\al(n,n)=243,则Ceq \\al(1,n)+Ceq \\al(2,n)+Ceq \\al(3,n)+…+Ceq \\al(n,n)等于( )
    A.31 B.32 C.15 D.16
    3.若eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,x)))n的展开式中二项式系数之和为64,则展开式的常数项为________.
    题型一 通项公式的应用
    命题点1 形如(a+b)n(n∈N*)的展开式的特定项
    例1 (1)二项式eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,\r(x))-x2))10的展开式中的常数项是( )
    A.-45 B.-10 C.45 D.65
    (2)已知eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(a,\r(x))))5的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=__________.
    命题点2 形如(a+b)m(c+d)n (m,n∈N*)的展开式问题
    例2 (1)(1+x)8(1+y)4的展开式中x2y2的系数是( )
    A.56 B.84 C.112 D.168
    (2)在(2x+a)eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(2,x)))6的展开式中,x2的系数为-120,则该二项展开式中的常数项为( )
    A.3 204 B.-160 C.160 D.-320
    思维升华 (1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项即可.
    (2)对于几个多项式积的展开式中的特定项问题,一般可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.
    跟踪训练1 (1)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(y,x)))(x+y)8的展开式中x2y6的系数为________(用数字作答).
    (2)在二项式(eq \r(2)+x)9的展开式中,常数项是________;系数为有理数的项的个数是________.
    题型二 二项式系数与项的系数问题
    命题点1 二项式系数和与系数和
    例3 (1)在eq \b\lc\(\rc\)(\a\vs4\al\c1(3x-\f(1,\r(x))))n的展开式中,各项系数和与二项式系数和之和为128,则( )
    A.二项式系数和为32
    B.各项系数和为128
    C.常数项为-135
    D.常数项为135
    (2)若(1+x)10=a0+a1x+a2x2+…+a10x10,则a2+a6+a8=________;a1+2a2+3a3+…+10a10=________.
    命题点2 系数与二项式系数的最值问题
    例4 (多选)下列关于eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)-2x))6的展开式的说法中正确的是( )
    A.常数项为-160
    B.第4项的系数最大
    C.第4项的二项式系数最大
    D.所有项的系数和为1
    思维升华 赋值法的应用
    一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令g(x)=(a+bx)n,则(a+bx)n的展开式中各项的系数和为g(1),(a+bx)n的展开式中奇数项的系数和为eq \f(1,2)[g(1)+g(-1)],(a+bx)n的展开式中偶数项的系数和为eq \f(1,2)[g(1)-g(-1)].
    跟踪训练2 (1)(多选)对于eq \b\lc\(\rc\)(\a\vs4\al\c1(x2-\f(3,x)))6的展开式,下列说法正确的是( )
    A.所有项的二项式系数和为64
    B.所有项的系数和为64
    C.常数项为1 215
    D.系数最大的项为第3项
    (2)设eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(2)+x))10=a0+a1x+a2x2+…+a10x10,则(a0+a2+a4+…+a10)2 -(a1+a3+a5+…+a9)2的值为________.
    题型三 二项式定理的综合应用
    例5 (1)设a∈Z,且0≤a≤13,若512 023+a能被13整除,则a等于( )
    A.0 B.1 C.11 D.12
    (2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是( )
    A.1.23 B.1.24
    C.1.33 D.1.34
    思维升华 二项式定理应用的题型及解法
    (1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.
    (2)二项式定理的一个重要用途是做近似计算:当n不是很大,|x|比较小时,(1+x)n≈1+nx.
    跟踪训练3 (1)设n为奇数,那么11n+Ceq \\al(1,n)·11n-1+Ceq \\al(2,n)·11n-2+…+Ceq \\al(n-1,n)·11-1除以13的余数是( )
    A.-3 B.2 C.10 D.11
    (2)0.996的计算结果精确到0.001的近似值是( )
    A.0.940 B.0.941
    C.0.942 D.0.943
    课时精练
    1.eq \b\lc\(\rc\)(\a\vs4\al\c1(x2-\f(2,x)))5的展开式中x4的系数为( )
    A.10 B.20 C.40 D.80
    2.(多选)若eq \b\lc\(\rc\)(\a\vs4\al\c1(x2+\f(1,ax)))6的展开式中的常数项为eq \f(15,16),则实数a的值可能为( )
    A.2 B.eq \f(1,2) C.-2 D.-eq \f(1,2)
    3.在eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,2x)))6(x+3)的展开式中,常数项为( )
    A.-eq \f(15,2) B.eq \f(15,2) C.-eq \f(5,2) D.eq \f(5,2)
    4.在eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(x)+\f(1,\r(3,x))))24的展开式中,x的指数是整数的项数是( )
    A.2 B.3 C.4 D.5
    5.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为( )
    A.-960 B.960 C.1 120 D.1 680
    6.设a=3n+Ceq \\al(1,n)3n-1+Ceq \\al(2,n)3n-2+…+Ceq \\al(n-1,n)3,则当n=2 023时,a除以15所得余数为( )
    A.3 B.4 C.7 D.8
    7.(多选)在二项式eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(3,x)-\f(1,2\r(3,x))))6的展开式中,正确的说法是( )
    A.常数项是第3项
    B.各项的系数和是eq \f(1,64)
    C.第4项二项式系数最大
    D.奇数项二项式系数和为32
    8.(多选)已知(1-2x)2 023=a0+a1x+a2x2+…+a2 023x2 023,则( )
    A.展开式中所有项的二项式系数和为22 023
    B.展开式中系数最大项为第1 350项
    C.a1+a3+a5+…+a2 023=eq \f(32 023-1,2)
    D.eq \f(a1,2)+eq \f(a2,22)+eq \f(a3,23)+…+eq \f(a2 023,22 023)=-1
    9.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=________,a1+a2+…+a5=________.
    10.(1+2x)n的展开式中第6项与第7项的系数相等,展开式中二项式系数最大的项为________;系数最大的项为________________.
    11.(x+y-2z)5的展开式中,xy2z2的系数是( )
    A.120 B.-120 C.60 D.30
    12.设(x-1)(2+x)3=a0+a1x+a2x2+a3x3+a4x4,则a1=________,2a2+3a3+4a4=________.
    13.若(2x+1)n=a0+a1x+a2x2+…+anxn的展开式中的各项系数和为243,则a1+2a2+…+nan等于( )
    A.405 B.810 C.243 D.64
    14.已知Sn是数列{an}的前n项和,若(1-2x)2 023=b0+b1x+b2x2+…+b2 023x2 023,数列{an}的首项a1=eq \f(b1,2)+eq \f(b2,22)+…+eq \f(b2 023,22 023),an+1=Sn·Sn+1,则S2 023等于( )
    A.-eq \f(1,2 023) B.eq \f(1,2 023)
    C.2 023 D.-2 023
    二项式定理
    (a+b)n=Ceq \\al(0,n)an+Ceq \\al(1,n)an-1b1+…+Ceq \\al(k,n)an-kbk+…+Ceq \\al(n,n)bn(n∈N*)
    二项展开式的通项
    Tk+1=Ceq \\al(k,n)an-kbk,它表示展开式的第k+1项
    二项式系数
    Ceq \\al(k,n)(k=0,1,…,n)
    相关试卷

    新高考数学一轮复习讲义第8章 §8.6 双曲线(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第8章 §8.6 双曲线(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第8章§86双曲线原卷版doc、新高考数学一轮复习讲义第8章§86双曲线含解析doc等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    新高考数学一轮复习讲义第8章 §8.5 椭 圆(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第8章 §8.5 椭 圆(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第8章§85椭圆原卷版doc、新高考数学一轮复习讲义第8章§85椭圆含解析doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。

    新高考数学一轮复习讲义第5章 §5.5 复 数(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义第5章 §5.5 复 数(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第5章§55复数原卷版doc、新高考数学一轮复习讲义第5章§55复数含解析doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习讲义第10章 §10.3 二项式定理(2份打包,原卷版+含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map