- 2024年内蒙古包头市中考数学试卷 试卷 0 次下载
- 2024年北京市中考数学试卷 试卷 1 次下载
- 2024年吉林省中考数学试卷 试卷 0 次下载
- 2024年四川省乐山市中考数学试卷 试卷 0 次下载
- 2024年四川省宜宾市中考数学试卷 试卷 0 次下载
2024年上海市中考数学试卷
展开1.(4分)如果x>y,那么下列正确的是( )
A.x+5≤y+5B.x﹣5<y﹣5C.5x>5yD.﹣5x>﹣5y
2.(4分)函数的定义域是( )
A.x=2B.x≠2C.x=3D.x≠3
3.(4分)以下一元二次方程有两个相等实数根的是( )
A.x2﹣6x=0B.x2﹣9=0C.x2﹣6x+6=0D.x2﹣6x+9=0
4.(4分)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )
A.甲种类B.乙种类C.丙种类D.丁种类
5.(4分)四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )
A.菱形B.矩形C.直角梯形D.等腰梯形
6.(4分)在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )
A.内含B.相交C.外切D.相离
二、填空题(每题4分,共48分)
7.(4分)计算:(4x2)3= .
8.(4分)计算:(a+b)(b﹣a)= .
9.(4分)已知,则x= .
10.(4分)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25GB,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示)
11.(4分)若正比例函数y=kx的图象经过点(7,﹣13),则y的值随x的增大而 .(选填“增大”或“减小”)
12.(4分)在菱形ABCD中,∠ABC=66°,则∠BAC= °.
13.(4分)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为 万元.
14.(4分)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有 个绿球.
15.(4分)如图,在平行四边形ABCD中,E为对角线AC上一点,设,若AE=2EC,则 (结果用含,的式子表示).
16.(4分)博物馆为展品准备了人工讲解、语音播报和AR增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR增强讲解的人数约有 人.
17.(4分)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cs∠ABC= .
18.(4分)对于一个二次函数y=a(x﹣m)2+k(a≠0)中存在一点P(x′,y′),使得x′﹣m=y′﹣k≠0,则称2|x′﹣m|为该抛物线的“开口大小”,那么抛物线“开口大小”为 .
三、简答题(共78分,其中第19~22题每题10分,第23、24题每题12分,第25题14分)
19.(10分)计算:.
20.(10分)解方程组:.
21.(10分)在平面直角坐标系xOy中,反比例函数y(k为常数且k≠0)上有一点A(﹣3,m),且与直线y=﹣2x+4交于另一点B(n,6).
(1)求k与m的值;
(2)过点A作直线l∥x轴与直线y=﹣2x+4交于点C,求sin∠OCA的值.
22.(10分)同学用两幅三角板拼出了如图的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠).
(1)求:①两个直角三角形的直角边(结果用h表示);
②平行四边形的底、高和面积(结果用h表示);
(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.
23.(12分)如图所示,在矩形ABCD中,E为边CD上一点,且AE⊥BD.
(1)求证:AD2=DE•DC;
(2)F为线段AE延长线上一点,且满足,求证:CE=AD.
24.(12分)在平面直角坐标系中,已知平移抛物线后得到的新抛物线经过和B(5,0).
(1)求平移后新抛物线的表达式;
(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q;
①如果PQ小于3,求m的取值范围;
②记点P在原抛物线上的对应点为P′,如果四边形P′BPQ有一组对边平行,求点P的坐标.
25.(14分)在梯形ABCD中,AD∥BC,点E在边AB上,且.
(1)如图1所示,点F在边CD上,且,联结EF,求证:EF∥BC;
(2)已知AD=AE=1;
①如图2所示,联结DE,如果△ADE外接圆的圆心恰好落在∠B的平分线上,求△ADE的外接圆的半径长;
②如图3所示,如果点M在边BC上,联结EM、DM、EC,DM与EC交于N.如果BC=4,且CD2=DM•DN,求边CD的长.
2024年上海市中考数学试卷
参考答案与试题解析
一、选择题(每题4分,共24分)
1.(4分)如果x>y,那么下列正确的是( )
A.x+5≤y+5B.x﹣5<y﹣5C.5x>5yD.﹣5x>﹣5y
【答案】C
【解答】解:如果x>y,两边同时加上5得x+5>y+5,则A不符合题意;
如果x>y,两边同时减去5得x﹣5>y﹣5,则B不符合题意;
如果x>y,两边同时乘5得5x>5y,则C符合题意;
如果x>y,两边同时乘﹣5得﹣5x<﹣5y,则D不符合题意;
故选:C.
2.(4分)函数的定义域是( )
A.x=2B.x≠2C.x=3D.x≠3
【答案】D
【解答】解:由题意得x﹣3≠0,
解得:x≠3,
故选:D.
3.(4分)以下一元二次方程有两个相等实数根的是( )
A.x2﹣6x=0B.x2﹣9=0C.x2﹣6x+6=0D.x2﹣6x+9=0
【答案】D
【解答】解:x2﹣6x=0的根为x=0或x=6,
∴x2﹣6x=0有两个不等实数根,故A不符合题意;
x2﹣9=0的根为x=3或x=﹣3,
∴x2﹣9=0有两个不等实数根,故B不符合题意;
由x2﹣6x+6=0知Δ=36﹣24=12>0,
∴x2﹣6x+6=0有两个不等实数根,故C不符合题意;
由x2﹣6x+9=0知Δ=36﹣36=0,
∴x2﹣6x+9=0有两个相等实数根,故D符合题意;
故选:D.
4.(4分)科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )
A.甲种类B.乙种类C.丙种类D.丁种类
【答案】B
【解答】解:∵甲种类和乙种类开花时间最短,
∴从甲种类和乙种类进行选,
∵甲的方差大于乙的方差,
∴开花时间最短的并且最平稳的是乙种类.
故选:B.
5.(4分)四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )
A.菱形B.矩形C.直角梯形D.等腰梯形
【答案】A
【解答】解:∵四边形ABCD为矩形,
∴AC=BD,S△ABC=S△BCD=S△ADC=S△BAD,
∵AE⊥BD,BF⊥AC,CG⊥BD,DH⊥AC,
∴AE=BF=CG=DH,
∴四个垂线可以拼成一个菱形,
故选:A.
6.(4分)在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )
A.内含B.相交C.外切D.相离
【答案】B
【解答】解:∵圆A半径为1,圆P半径为3,圆A与圆P内切,
∴圆A含在圆P内,即PA=3﹣1=2,
∴P在以A为圆心、2为半径的圆与△ABC边相交形成的弧上运动,如图所示:
∴当到P'位置时,圆P与圆B圆心距离PB最大,为,
∵,
∴圆P与圆B相交,
故选:B.
二、填空题(每题4分,共48分)
7.(4分)计算:(4x2)3= 64x6 .
【答案】64x6.
【解答】解:(4x2)3=64x6,
故答案为:64x6.
8.(4分)计算:(a+b)(b﹣a)= b2﹣a2 .
【答案】b2﹣a2.
【解答】解:(a+b)(b﹣a)
=(b+a)(b﹣a)
=b2﹣a2,
故答案为:b2﹣a2.
9.(4分)已知,则x= 1 .
【答案】1.
【解答】解:∵,
∴2x﹣1=1,
∴x=1,
故答案为:1.
10.(4分)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25GB,则蓝光唱片的容量是普通唱片的 8×103 倍.(用科学记数法表示)
【答案】8×103.
【解答】解:2×105=200000,
则200000÷25=8000=8×103,
即蓝光唱片的容量是普通唱片的8×103倍,
故答案为:8×103.
11.(4分)若正比例函数y=kx的图象经过点(7,﹣13),则y的值随x的增大而 减小 .(选填“增大”或“减小”)
【答案】减小.
【解答】解:∵正比例函数y=kx的图象经过点(7,﹣13),
∴﹣13=7k,
解得:k.
∵k0,
∴y的值随x的增大而减小.
故答案为:减小.
12.(4分)在菱形ABCD中,∠ABC=66°,则∠BAC= 57 °.
【答案】57.
【解答】解:∵四边形ABCD是菱形,
∴AB=BC,
∴∠BAC=∠BCA,
∵∠ABC=66°,
∴∠BAC(180°﹣66°)=57°.
故答案为:57.
13.(4分)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为 4500 万元.
【答案】4500.
【解答】解:设y=ke+b,
∵当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,
∴,
解得,
∴y=50x+500,
当x=80时,y=50×80+500=4500,
故答案为:4500.
14.(4分)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有 3 个绿球.
【答案】3.
【解答】解:∵一个袋子中有若干个白球和绿球,随机从中摸一个球,恰好摸到绿球的概率是,
∴袋子中至少有3个绿球,
故答案为:3.
15.(4分)如图,在平行四边形ABCD中,E为对角线AC上一点,设,若AE=2EC,则 (结果用含,的式子表示).
【答案】.
【解答】解:∵,AE=2CE,
∴,
又∵,
∴,
∵四边形ABCD是平行四边形,
∴,
故答案为:.
16.(4分)博物馆为展品准备了人工讲解、语音播报和AR增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR增强讲解的人数约有 2000 人.
【答案】2000.
【解答】解:在总共2万人的参观中,需要AR增强讲解的人数约有200002000(人).
故答案为:2000.
17.(4分)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cs∠ABC= 或 .
【答案】或.
【解答】解:当C′在AB之间时,如图,
根据AC':AB:BC=1:3:7,不妨设AC'=1,AB=3,BC=7,
由翻折的性质知:∠FCD=∠FC'D',
∵CD沿直线l翻折至AB所在直线,
∴∠BC′F+∠FC′D′=∠FCD+∠FBA,
∴∠BC′F=∠FBA,
∴,
过F作AB的垂线交于E,
∴,
∴,
当C′在BA的延长线上时,如图,
根据AC′:AB:BC=1:3:7,不妨设AC'=1,AB=3,BC=7,
同理知:,
过点F作AB的垂线交于E,
∴,
∴,
故答案为:或.
18.(4分)对于一个二次函数y=a(x﹣m)2+k(a≠0)中存在一点P(x′,y′),使得x′﹣m=y′﹣k≠0,则称2|x′﹣m|为该抛物线的“开口大小”,那么抛物线“开口大小”为 4 .
【答案】4.
【解答】解:∵抛物线(x)2,
∴x′(x′)2,
解得x′2,
∴抛物线“开口大小”为2|x′|=2×|﹣2|=4,
故答案为:4.
三、简答题(共78分,其中第19~22题每题10分,第23、24题每题12分,第25题14分)
19.(10分)计算:.
【答案】.
【解答】解:
.
20.(10分)解方程组:.
【答案】,.
【解答】解:,
由①,得(x﹣4y)(x+y)=0,
x﹣4y=0或x+y=0,
x=4y或x=﹣y,
把x=4y代入②,得4y+2y=6,
解得:y=1,
即x=4×1=4;
把x=﹣y代入②,得﹣y+2y=6,
解得:y=6,
即x=﹣6,
所以方程组的解是,.
21.(10分)在平面直角坐标系xOy中,反比例函数y(k为常数且k≠0)上有一点A(﹣3,m),且与直线y=﹣2x+4交于另一点B(n,6).
(1)求k与m的值;
(2)过点A作直线l∥x轴与直线y=﹣2x+4交于点C,求sin∠OCA的值.
【答案】(1)k=﹣6,m=2.(2)sin∠OCA.
【解答】解:(1)点B(n,6)在直线y=﹣2x+4图象上,
∴﹣2n+4=6,解得n=﹣1,
∴B(﹣1,6),
∵B(﹣1,6)在反比例函数图象上,
∴k=﹣6,
∴反比例函数解析式为y,
∵点A(﹣3,m)在反比例函数图象上,
∴m2.
∴m=2.
(2)在函数y=﹣2x+4中,当y=2时,x=1,
∴C(1,2),
∴OC,
∴sin∠OCA.
22.(10分)同学用两幅三角板拼出了如图的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠).
(1)求:①两个直角三角形的直角边(结果用h表示);
②平行四边形的底、高和面积(结果用h表示);
(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.
【答案】(1)①等腰直角三角板直角边为 ,含 30° 的直角三角形板直角边为2h和 ;②小平行四边形的底为 ,高为 ,面积为 ;
(2)见解析.
【解答】解:(1)①如图,△ABC为等腰直角三角板,∠ACB=90°,则,
如图,△DEF为含30°的直角三角形板,∠DEF=90°,∠F=30°,D=60°,则EF=2h,;
综上,等腰直角三角板直角边为 ,含 30° 的直角三角形板直角边为2h和 ;
②由题意可知∠MNG=∠NGH=∠GHM=∠HMN=90°,
∴四边形MNGH是矩形,
由图可得,,,
∴,
故小平行四边形的底为 ,高为 ,面积为 ,
(2)如图,即为所作图形.
23.(12分)如图所示,在矩形ABCD中,E为边CD上一点,且AE⊥BD.
(1)求证:AD2=DE•DC;
(2)F为线段AE延长线上一点,且满足,求证:CE=AD.
【答案】见解析.
【解答】证明:(1)∵矩形ABCD,
∴∠BAD=90°,∠ADE=90°,AB=DC,
∴∠ABD+∠ADB=90°,
∵AE⊥BD,
∴∠DAE+∠ADB=90°,
∴∠ABD=∠DAE,
∵∠BAD=∠ADE=90°,
∴△ADE∽△BAD,
∴,
∴AD2=DE•BA,
∵AB=DC,
∴AD2=DE•DC;
(2)连接AC,交BD于点O,
∵矩形ABCD,
∴∠ADE=90°,
∴∠DAE+∠AED=90°,
∵AE⊥BD,
∴∠DAE+∠ADB=90°,
∴∠ADB=∠AED,
∵∠FEC=∠AED,
∴∠ADO=∠FEC,
∵矩形ABCD,
∴,
∴,
∴OA=OD=EF=CF,
∴∠ADO=∠OAD,∠FEC=∠FCE,
∵∠ADO=∠FEC,
∴∠ADO=∠OAD=∠FEC=∠FCE,
在△ODA和△FEC中,
,
∴△ODA≌△FEC(AAS),
∴CE=AD.
24.(12分)在平面直角坐标系中,已知平移抛物线后得到的新抛物线经过和B(5,0).
(1)求平移后新抛物线的表达式;
(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q;
①如果PQ小于3,求m的取值范围;
②记点P在原抛物线上的对应点为P′,如果四边形P′BPQ有一组对边平行,求点P的坐标.
【答案】(1);
(2)①0<m<1;②.
【解答】解:(1)设平移抛物线后得到的新抛物线为,
把和B(3,0)代入,
可得:,解得:,
∴新抛物线为;
(2)①如图,设,则,
∴,
∵PQ小于3,
∴,
∴x<1,
∵x=m(m>0),
∴0<m<1;
②,
∴平移方式为:向右平移2个单位,向下平移3个单位,
由题意可得:P在B的右边,当BP′∥PQ时,
∴BP′⊥x轴,
∴xP′=xB=5,
∴,
由平移的性质可得:,即;
如图,当P′Q∥BP时,则∠P′QT=∠BPT,过P′作P′S⊥QP于S,
∴∠P'SQ=∠BTP=90°,
∴△P'SQ∽△BTP,
∴,
设,则,,,
∴,
解得:x=1(不符合题意舍去);
综上:.
25.(14分)在梯形ABCD中,AD∥BC,点E在边AB上,且.
(1)如图1所示,点F在边CD上,且,联结EF,求证:EF∥BC;
(2)已知AD=AE=1;
①如图2所示,联结DE,如果△ADE外接圆的圆心恰好落在∠B的平分线上,求△ADE的外接圆的半径长;
②如图3所示,如果点M在边BC上,联结EM、DM、EC,DM与EC交于N.如果BC=4,且CD2=DM•DN,求边CD的长.
【答案】(1)证明过程见解析;
(2)①;②.
【解答】(1)证明:延长DE和CB交于点G,
∵AD∥BC,
∴,
∵AEAB,DF
∴,,
∴,
∴EF∥BC.
(2)①记点O为△ADE外接圆圆心,过点O作OF⊥AE于点F,连接OA,OD,OE.
∵点O为△ADE外接圆的圆心,
∴OA=OE=OD,
∴AF=EFAE,
∵AEAB,
∴AB=3AE=3,
∵AE=AD,0E=OD,OA=OA,
∴△AOE≌△AOD(SSS),
∴∠EAO=∠DAO,
∵BO平分∠ABC,
∴∠ABO=∠CBO,
∵AD∥BC,
∴∠DAB+∠ABC=180°,
∴2∠EAO+2∠ABO=180°,即∠EAO+∠ABO=90°,
∴∠AOB=90°,
∵OF⊥AE,
∴∠AFO=∠AOB=90°,
∵∠FAO=∠OAB,
∴△FAO∽△OAB,
∴,即AO2=AF•AB,
∴AO,
∴△ADE外接圆半径为.
②延长BA,CD交于点P,过点E作EQ⊥BC,垂足为点Q.
∵AD∥BC,
∴△PAD∽△PBC,
∴,
由①知AB=3,
∴,
∴PA=1,
∵CD2=DM•DN,
∴,
∵∠CDN=∠MDC,
∴△DCN∽△DMC,
∴∠DCN=∠CMD,
∵∠DMC=∠CEM,
∴∠CEM=∠DCN,
∴EM∥CD,
∴,
由AB=3,AE=1得,BE=2,
∴,
∴BM=MC=2,
∴△BEM∽△BPC,
∴,
设ME=2a,则PC=4a,
∵AD∥BC,
∴,
∴PD=a,DC=3a,
∵EM∥CD,
∴△ENM∽△CND,
∴,
设EN=2b,则CN=3b,
∵∠DMC=∠CEM,∠ECM=∠MCN,
∴△CNM∽△CME,
∴,即CM2=CN•CE,
∴4=3b•5b,解得b,
∴CE,
在Rt△BQE中,由勾股定理可得:
BE2﹣BQ2=CN2﹣CQ2,
∴4﹣BQ2=()2﹣(4﹣BQ)2,
解得BQ,
∴EQ2=BE2﹣BQ2,
∵QM=BM﹣BQ=2,
∴在Rt△EQM中,由勾股定理可得,EM,
∵,
∴DC.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2024/6/18 18:51:01;用户:大胖001;邮箱:15981837291;学号:22699691种类
甲种类
乙种类
丙种类
丁种类
平均数
2.3
2.3
2.8
3.1
方差
1.05
0.78
1.05
0.78
种类
甲种类
乙种类
丙种类
丁种类
平均数
2.3
2.3
2.8
3.1
方差
1.05
0.78
1.05
0.78
2021年上海市中考数学试卷: 这是一份2021年上海市中考数学试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021年上海市中考数学试卷及答案: 这是一份2021年上海市中考数学试卷及答案,共13页。
2023年上海市中考数学试卷: 这是一份2023年上海市中考数学试卷,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。