浙江省瑞安市2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析
展开这是一份浙江省瑞安市2022-2023学年数学九年级第一学期期末达标检测模拟试题含解析,共18页。试卷主要包含了下列说法正确的是,已知点A,在平面直角坐标系中,点等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.抛物线y=(x-4)(x+2)的对称轴方程为( )
A.直线x=-2B.直线x=1C.直线x=-4D.直线x=4
2.将抛物线y=(x﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3
C.y=(x﹣5)2﹣13D.y=(x+1)2﹣3
3.若△ABC~△A′B'C′,相似比为1:2,则△ABC与△A'B′C'的周长的比为( )
A.2:1B.1:2C.4:1D.1:4
4.下列说法正确的是( )
A.等弧所对的圆心角相等B.平分弦的直径垂直于这条弦
C.经过三点可以作一个圆D.相等的圆心角所对的弧相等
5.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是( )
A.5B.4C.3D.2
6.如图,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,::25,则DE:=( )
A.2:5B.3:2C.2:3D.5:3
7.如图,已知在中,,于,则下列结论错误的是( )
A.B.C.D.
8.用配方法解方程x2+2x﹣5=0时,原方程应变形为( )
A.(x﹣1)2=6B.(x+1)2=6C.(x+2)2=9D.(x﹣2)2=9
9.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为( )
A.3B.-3C.-1D.1
10.在平面直角坐标系中,点(﹣3,2)关于原点对称的点是( )
A.(2,﹣3)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)
11.由的图像经过平移得到函数的图像说法正确的是( )
A.先向左平移6个单位长度,然后向上平移7个单位长度
B.先向左平移6个单位长度,然后向下平移7个单位长度
C.先向右平移6个单位长度,然后向上平移7个单位长度
D.先向右平移6个单位长度,然后向下平移7个单位长度
12.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠CB.∠ADB=∠ABCC.D.
二、填空题(每题4分,共24分)
13.若函数y=(m+1)x2﹣x+m(m+1)的图象经过原点,则m的值为_____.
14.已知等腰,,BH为腰AC上的高,,,则CH的长为______.
15.如图,、、所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)
16.如图,四边形是菱形,,对角线,相交于点,于,连接,则=_________度.
17.如图,已知等边的边长为4,,且.连结,并延长交于点,则线段的长度为__________.
18.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.
三、解答题(共78分)
19.(8分)已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:
(1)求b、c的值;
(2)当x取何值时,该二次函数有最小值,最小值是多少?
20.(8分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.
(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是 (只需要填一个三角形);
(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.
21.(8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,;
(2)求在旋转过程中,CA所扫过的面积.
22.(10分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
23.(10分)计算:3tan30°− tan45°+ 2sin60°
24.(10分)如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
25.(12分)如图,直线y=x+2与y轴交于点A,与反比例函数的图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,求反比例函数的解析式.
26.如图,已知Rt△ABO,点B在轴上,∠ABO=90°,∠AOB=30°,OB=,反比例函数的图象经过OA的中点C,交AB于点D.
(1)求反比例函数的表达式;
(2)求△OCD的面积;
(3)点P是轴上的一个动点,请直接写出使△OCP为直角三角形的点P坐标.
参考答案
一、选择题(每题4分,共48分)
1、B
【解析】把抛物线解析式整理成顶点式解析式,然后写出对称轴方程即可.
【详解】解:y=(x+2)(x-4),
=x2-2x-8,
=x2-2x+1-9,
=(x-1)2-9,
∴对称轴方程为x=1.
故选:B.
【点睛】
本题考查了二次函数的性质,是基础题,把抛物线解析式整理成顶点式解析式是解题的关键.
2、D
【分析】根据“上加下减,左加右减”的原则进行解答即可.
【详解】解:由“左加右减”的原则可知,将抛物线y=(x-2)2-8向左平移1个单位所得直线的解析式为:
y=(x+1)2-8;
由“上加下减”的原则可知,将抛物线y=(x-5)2-8向上平移5个单位所得抛物线的解析式为:
y=(x+1)2-1.
故选:D.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
3、B
【分析】根据相似三角形的周长比等于相似比即可得出结论.
【详解】解:∵∽,相似比为1:1,
∴与的周长的比为1:1.
故选:B.
【点睛】
此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.
4、A
【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.
【详解】等弧所对的圆心角相等,A正确;
平分弦的直径垂直于这条弦(此弦不能是直径),B错误;
经过不在同一直线上的三点可以作一个圆,C错误;
相等的圆心角所对的弧不一定相等,
故选A.
【点睛】
此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系
5、C
【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根.
【详解】设方程的另一个根为m,则1+m=4,
∴m=3,
故选C.
【点睛】
本题考查了一元二次方程根与系数的关系.解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.
6、B
【分析】根据平行四边形的性质得到DC//AB,DC=AB,得到△DFE∽△BFA,根据相似三角形的性质计算即可.
【详解】四边形ABCD是平行四边形,
,,
∽,
:,
,
::2,
故选B.
【点睛】
本题考查的是相似三角形的性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
7、A
【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.
【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;
故选:A.
【点睛】
本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.
8、B
【解析】x2+2x﹣5=0,
x2+2x=5,
x2+2x+1=5+1,
(x+1)2=6,
故选B.
9、B
【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.
【详解】∵点A(1,a)、点B(b,2)关于原点对称,
∴a=﹣2,b=﹣1,
∴a+b=﹣3.
故选B.
【点睛】
关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.
10、D
【详解】解:由两个点关于原点对称,则横、纵坐标都是原数的相反数,得点(﹣3,2)关于原点对称的点是(3,﹣2).
故选D.
【点睛】
本题考查关于原点对称的点的坐标.
11、C
【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.
【详解】解:抛物线y=2x2的顶点坐标为(0,0),
抛物线y=2(x-6)2+1的顶点坐标为(6,1),
所以,先向右平移6个单位,再向上平移1个单位可以由抛物线y=2x2平移得到抛物线y=2(x-6)2+1.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.
12、C
【分析】由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
二、填空题(每题4分,共24分)
13、0或﹣1
【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.
【详解】∵函数经过原点,
∴m(m+1)=0,
∴m=0或m=﹣1,
故答案为0或﹣1.
【点睛】
本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.
14、或
【分析】如图所示,分两种情况,利用特殊角的三角函数值求出的度数,利用勾股定理求出所求即可.
【详解】当为钝角时,如图所示,
在中,,,
,
根据勾股定理得:,即,
;
当为锐角时,如图所示,
在中,,
,
,
设,则有,
根据勾股定理得:,
解得:,
则,
故答案为或
【点睛】
此题属于解直角三角形题型,涉及的知识有:等腰三角形的性质,勾股定理,以及特殊角的三角函数值,熟练掌握直角三角形的性质及分类的求解的数学思想是解本题的关键.
15、r3 <r2 <r1
【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可.
【详解】解:利用尺规作图分别做出、、所在的圆心及半径
∴r3 <r2 <r1
故答案为:r3 <r2 <r1
【点睛】
本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.
16、25
【解析】首先求出∠HDB的度数,再利用直角三角形斜边中线定理可得OH=OD,由此可得∠OHD=∠ODH即可解决问题.
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,
∴∠ABO=90°−∠BAO=65°,
∵DH⊥AB,
∴∠DHB=90°,
∴∠BDH=90°−ABO=25°,
在Rt△DHB中,∵OD=OB,
∴OH=OD=OB,
∴∠DHO=∠HDB=25°,
故答案为:25.
【点睛】
本题考查了菱形的性质,直角三角形斜边中线定理,熟练掌握性质定理是解题的关键.
17、1
【分析】作CF⊥AB,根据等边三角形的性质求出CF,再由BD⊥AB,由CF∥BD,得到△BDE∽△FCE,设BE为x,再根据对应线段成比例即可求解.
【详解】作CF⊥AB,垂足为F,
∵△ABC为等边三角形,
∴AF=AB=2,
∴CF=
又∵BD⊥AB,∴CF∥BD,
∴△BDE∽△FCE,设BE为x,
∴,即
解得x=1
故填:1.
【点睛】
此题主要考查相似三角形的判定与性质,解题的根据是根据题意构造相似三角形进行求解.
18、 (﹣3,1)
【分析】根据二次函数y=a(x-h)2+k(a≠0)的顶点坐标是(h,k),即可求解.
【详解】解:∵二次函数y=a(x+3)2﹣b(a≠0)有最大值1,
∴﹣b=1,
根据二次函数的顶点式方程y=a(x+3)2﹣b(a≠0)知,该函数的顶点坐标是:(﹣3,﹣b),
∴该函数图象的顶点坐标为(﹣3,1).
故答案为:(﹣3,1).
【点睛】
本题考查了二次函数的性质,解答该题时,需熟悉二次函数的顶点式y=a(x-h)2+k中的h、k所表示的意义.
三、解答题(共78分)
19、(1)b=-4,c=5;(2)当x=2时,二次函数有最小值为1
【分析】(1)利用待定系数法求解即可;
(2)根据图象上点的坐标,可得出图象的对称轴及顶点坐标,即可得到答案.
【详解】(1)把(0,5),(1,2)代入y=x2+bx+c得:
,
解得:,
∴,;
(2)由表格中数据可得:
∵、时的函数值相等,都是2,
∴此函数图象的对称轴为直线,
∴当x=2时,二次函数有最小值为1.
【点睛】
本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.
20、(1)△DFG或△DHF;(2).
【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.
【详解】(1)、的面积为:,
只有△DFG或△DHF的面积也为6且不与△ABC全等,
与△ABC不全等但面积相等的三角形是:△DFG或△DHF;
(2)、画树状图如图所示:
由树状图可知共有6种等可能结果, 其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,
所以所画三角形与△ABC面积相等的概率P=
答:所画三角形与△ABC面积相等的概率为.
【点睛】
本题综合考查了三角形的面积和概率.
21、 (1)见解析;(2).
【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可.
(2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计算即可.
【详解】解:
(1)△A1B1C为所求作的图形:
(2)∵AC=,∠ACA1=90°,
∴在旋转过程中,CA所扫过的面积为:
.
【点睛】
本题考查的知识点是作图-旋转变换, 扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换, 扇形面积的计算.
22、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
【分析】(1)由国家创新指数得分为69.5以上(含69.5)的国家有17个,即可得出结果;
(2)根据中国在虚线l1的上方,中国的创新指数得分为69.5,找出该点即可;
(3)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可得出结果;
(4)根据40个国家的人均国内生产总值和国家创新指数得分情况统计图,即可判断①②的合理性.
【详解】解:(1)∵国家创新指数得分为69.5以上(含69.5)的国家有17个,
∴国家创新指数得分排名前40的国家中,中国的国家创新指数得分排名世界第17,
故答案为17;
(2)如图所示:
(3)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.8万美元;
故答案为2.8;
(4)由40个国家的人均国内生产总值和国家创新指数得分情况统计图可知,
①相比于点A、B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;合理;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗日标,进一步提高人均国内生产总值;合理;
故答案为①②.
【点睛】
本题考查了频数分布直方图、统计图、样本估计总体、近似数和有效数字等知识;读懂频数分布直方图和统计图是解题的关键.
23、
【分析】先计算出特殊的三角函数值,按照运算顺序计算即可.
【详解】解:原式
.
【点睛】
本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.
24、(1)见解析,(2,﹣3);
(2)见解析,1.1.
【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用位似图形的性质得出对应点位置进而结合三角形面积求法得出答案.
【详解】解:(1)如图所示:△A1B1C1,即为所求;
点B1的坐标为:(2,﹣3);
(2)如图所示:△A2B2C2,即为所求;
点C2的坐标为:(﹣2,﹣3);
△A2B2C2的面积为:4﹣×1×1﹣×1×2﹣×1×2=1.1.
.
【点睛】
此题主要考查了平移变换以及位似变换,正确得出对应点位置是解题关键.
25、
【解析】试题分析: 先求出点A的坐标,然后表示出AO、BO的长度,根据AO=2BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.
试题解析:当x=0时,y=2,∴A(0,2),
∴AO=2,∵AO=2BO,∴BO=1,
当x=1时,y=1+2=3,∴C(1,3),
把C(1,3)代入,解得:
反比例函数的解析式为:
26、(1);(2)面积为;(3)P(2,0)或(4,0)
【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;
(2)补形法,求出各点坐标,S△OCD =S△AOB-S△ACD- S△OBD;
(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.
【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,
∴AB= OB=2,
作CE⊥OB于E,
∵∠ABO=90°,
∴CE∥AB,
∴OC=AC,
∴OE=BE=OB=,CE=AB=1,
∴C(,1),
∵反比例函数(x>0)的图象经过OA的中点C,
∴1=,∴k=,
∴反比例函数的关系式为;
(2)∵OB=,
∴D的横坐标为,
代入得,y=,
∴D(,),
∴BD=,
∵AB=,
∴AD=,
∴S△OCD =S△AOB-S△ACD- S△OBD =OB•AB-AD•BE-BD•OB=
(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),
∴P(2,0).
当∠OCP=90°时.
∵C(2,2),
∴∠COB=45°.
∴△OCP为等腰直角三角形.
∴P(4,0).
综上所述,点P的坐标为(2,0)或(4,0).
【点睛】
本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.
x
…
﹣1
0
1
2
3
4
…
y
…
10
5
2
1
2
5
…
相关试卷
这是一份重庆两江新区2022年数学九年级第一学期期末达标检测模拟试题含解析,共21页。
这是一份2022-2023学年安徽省亳州市高炉学校数学九年级第一学期期末达标检测模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份浙江省鄞州区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共6页。试卷主要包含了二次函数y=x2+,已知等内容,欢迎下载使用。