- 2025年高考数学一轮复习(基础版)课时精讲第7章 §7.2 空间点、直线、平面之间的位置关系(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第7章 §7.3 空间直线、平面的平行(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第7章 §7.5 空间向量的概念与运算(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第7章 §7.6 向量法求空间角(2份打包,原卷版+含解析) 试卷 0 次下载
- 2025年高考数学一轮复习(基础版)课时精讲第8章 §8.1 直线的方程(2份打包,原卷版+含解析) 试卷 0 次下载
2025年高考数学一轮复习(基础版)课时精讲第7章 §7.4 空间直线、平面的垂直(2份打包,原卷版+含解析)
展开1.理解空间中直线与直线、直线与平面、平面与平面的垂直关系.
2.掌握直线与平面、平面与平面垂直的判定与性质,并会简单应用.
知识梳理
1.直线与平面垂直
(1)直线和平面垂直的定义
一般地,如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.
(2)判定定理与性质定理
2.直线和平面所成的角
(1)定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是90°;一条直线和平面平行,或在平面内,我们说它们所成的角是0°.
(2)范围:eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2))).
3.二面角
(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.
(2)二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.
(3)二面角的范围:[0,π].
4.平面与平面垂直
(1)平面与平面垂直的定义
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(2)判定定理与性质定理
常用结论
1.三垂线定理
平面内的一条直线如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直.
2.三垂线定理的逆定理
平面内的一条直线如果和穿过该平面的一条斜线垂直,那么它也和这条斜线在该平面内的射影垂直.
3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)若直线l与平面α内的两条直线都垂直,则l⊥α.( )
(2)若直线a⊥α,b⊥α,则a∥b.( )
(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )
(4)若α⊥β,a⊥β,则a∥α.( )
2.(多选)下列命题中不正确的是( )
A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线a
B.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面β
C.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线a
D.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
3.如图,PA是圆柱的母线,AB是圆柱的底面直径,C是圆柱底面圆周上的任意一点(不与A,B重合),则下列说法错误的是( )
A.PA⊥平面ABC
B.BC⊥平面PAC
C.AC⊥平面PBC
D.三棱锥P-ABC的四个面都是直角三角形
4.过平面外一点P的斜线段是过这点的垂线段的eq \f(2\r(3),3)倍,则斜线与平面α所成的角是________.
题型一 直线与平面垂直的判定与性质
例1 如图,在三棱柱ABC-A1B1C1中,点B1在底面ABC内的射影恰好是点C.
(1)若点D是AC的中点,且DA=DB,证明:AB⊥CC1;
(2)已知B1C1=2,B1C=2eq \r(3),求△BCC1的周长.
跟踪训练1 如图,已知正方体ABCD-A1B1C1D1.
(1)求证:A1C⊥B1D1;
(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.
题型二 平面与平面垂直的判定与性质
例2 如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°.
(1)证明:平面ACC1A1⊥平面BB1C1C;
(2)设AB=A1B,AA1=2,求四棱锥A1-BB1C1C的高.
跟踪训练2 如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥平面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:
(1)PA⊥平面ABCD;
(2)平面BEF∥平面PAD;
(3)平面BEF⊥平面PCD.
题型三 垂直关系的综合应用
例3 如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.
(1)试判断不论点P在AD1上的任何位置,是否都有平面BPA⊥平面AA1D1D,并证明你的结论;
(2)当P为AD1的中点时,求异面直线AA1与B1P所成角的余弦值;
(3)求PB1与平面AA1D1D所成角的正切值的最大值.
课时精练
一、单项选择题
1.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为( )
A.过点P垂直于平面α的直线平行于平面β
B.过点P垂直于直线l的直线在平面α内
C.过点P垂直于平面β的直线在平面α内
D.过点P且在平面α内垂直于l的直线必垂直于平面β
2.若P是△ABC所在平面外一点,且PA⊥BC,PB⊥AC,则点P在△ABC所在平面内的射影O是△ABC的( )
A.内心 B.外心 C.重心 D.垂心
3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC内的射影H必在( )
A.直线AB上 B.直线BC上
C.直线AC上 D.△ABC内部
4.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题错误的是( )
A.若m⊥α,n⊥β,且α∥β,则m∥n
B.若m⊥α,n∥β,且α∥β,则m⊥n
C.若α∥β,m⊂α,n⊂β,则m∥n
D.若m⊥α,n⊥β,且α⊥β,则m⊥n
二、多项选择题
5.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点E,F分别是棱PA,PB的中点,则下列结论正确的是( )
A.CD⊥PD
B.AB⊥PC
C.平面PBD⊥平面PAC
D.E,F,C,D四点共面
6.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,BC=CD=eq \f(1,2)AB=2,E为AB的中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2eq \r(3).则下列说法正确的有( )
A.CD⊥平面EDP
B.四棱锥P-EBCD外接球的体积为4eq \r(3)π
C.二面角P-CD-B的大小为eq \f(π,4)
D.直线PC与平面EDP所成角的正切值为eq \r(2)
三、填空题
7.在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面有________个.
8.埃及胡夫金字塔是古代世界建筑奇迹之一,其形状可视为一个正四棱锥,已知该金字塔的塔高与底面边长的比满足黄金比例,即比值约为eq \f(\r(5)-1,2),则它的侧棱与底面所成角的正切值约为________.
四、解答题
9.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后点A的位置为点P,且使平面PBD⊥平面BCD.
求证:(1)CD⊥平面PBD;
(2)平面PBC⊥平面PCD.
10.如图,四边形PDCE为矩形,四边形ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=eq \f(1,2)CD=1,PD=eq \r(2).
(1)若M为PA的中点,求证:AC∥平面MDE;
(2)求直线PB与直线CD所成角的大小;
文字语言
图形表示
符号表示
判定定理
如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n))⇒l⊥α
性质定理
垂直于同一个平面的两条直线平行
eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊥α,b⊥α))⇒a∥b
文字语言
图形表示
符号表示
判定定理
如果一个平面过另一个平面的垂线,那么这两个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊂α,a⊥β))⇒α⊥β
性质定理
两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(α⊥β,α∩β=a,l⊥a,l⊂β))⇒l⊥α
2025年高考数学一轮复习(基础版)课时精讲第1章 §1.1 集合(2份打包,原卷版+含解析): 这是一份2025年高考数学一轮复习(基础版)课时精讲第1章 §1.1 集合(2份打包,原卷版+含解析),文件包含2025年高考数学一轮复习基础版课时精讲第1章§11集合原卷版doc、2025年高考数学一轮复习基础版课时精讲第1章§11集合含解析doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
第09章 立体几何-第04讲 空间直线、平面的垂直-2024版高考数学零基础一轮复习讲义PDF原卷+解析: 这是一份第09章 立体几何-第04讲 空间直线、平面的垂直-2024版高考数学零基础一轮复习讲义PDF原卷+解析,文件包含第04讲空间直线平面的垂直答案pdf、第04讲空间直线平面的垂直pdf等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
(新高考)高考数学一轮复习讲练测第7章§7.4空间直线、平面的平行(含解析): 这是一份(新高考)高考数学一轮复习讲练测第7章§7.4空间直线、平面的平行(含解析),共18页。