![沪教版八年级数学下册期中期末满分冲刺卷专题02全等三角形中的六种模型梳理(原卷版+解析)第1页](http://m.enxinlong.com/img-preview/2/3/15958505/0-1720577766821/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![沪教版八年级数学下册期中期末满分冲刺卷专题02全等三角形中的六种模型梳理(原卷版+解析)第2页](http://m.enxinlong.com/img-preview/2/3/15958505/0-1720577766858/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![沪教版八年级数学下册期中期末满分冲刺卷专题02全等三角形中的六种模型梳理(原卷版+解析)第3页](http://m.enxinlong.com/img-preview/2/3/15958505/0-1720577766878/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:沪教版八年级数学下册期中期末满分冲刺卷(原卷版+解析)
沪教版八年级数学下册期中期末满分冲刺卷专题02全等三角形中的六种模型梳理(原卷版+解析)
展开
这是一份沪教版八年级数学下册期中期末满分冲刺卷专题02全等三角形中的六种模型梳理(原卷版+解析),共51页。试卷主要包含了倍长中线模型,截长补短模型,做平行线证明全等,旋转模型,手拉手模型,一线三角模型等内容,欢迎下载使用。
类型一、倍长中线模型
中线倍长法:将中点处的线段延长一倍。
目的: = 1 \* GB3 ①构造出一组全等三角形; = 2 \* GB3 ②构造出一组平行线。将分散的条件集中到一个三角形中去。
例1.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.
【探究与发现】
如图1,延长△ABC的边BC到D,使DC=BC,过D作DE∥AB交AC延长线于点E,求证:△ABC≌△EDC.
【理解与应用】
如图2,已知在△ABC中,点E在边BC上且∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.
(1)求证:AC=BD;
(2)若BD=3,AD=5,AE=x,求x的取值范围.
【变式训练1】如图1,在中,是边的中线,交延长线于点,.
(1)求证;
(2)如图2,平分交于点,交于点,若,,求的值.
【变式训练2】(1)如图1,已知中,AD是中线,求证:;
(2)如图2,在中,D,E是BC的三等分点,求证:;
(3)如图3,在中,D,E在边BC上,且.求证:.
【变式训练3】在中,点为边中点,直线绕顶点旋转,直线于点.直线于点,连接,.
(1)如图1,若点,在直线的异侧,延长交于点.求证:.
(2)若直线绕点旋转到图2的位置时,点,在直线的同侧,其它条件不变,此时,,,求的长度.
(3)若过点作直线于点.试探究线段、和的关系.
类型二、截长补短模型
截长补短法使用范围:线段和差的证明(往往需证2次全等)
例.在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.
(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.
(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?
答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).
(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.
【变式训练1】如图,在四边形中,,点E、F分别在直线、上,且.
(1)当点E、F分别在边、上时(如图1),请说明的理由.
(2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由.
【变式训练2】(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
方法1:在上截取,连接,得到全等三角形,进而解决问题;
方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
(3)问题拓展:如图3,在四边形中,,,过点D作,垂足为点E,请直接写出线段、、之间的数量关系.
【变式训练3】在中,BE,CD为的角平分线,BE,CD交于点F.
(1)求证:;
(2)已知.
①如图1,若,,求CE的长;
②如图2,若,求的大小.
类型三、做平行线证明全等
例1.如图所示:是等边三角形,、分别是及延长线上的一点,且,连接交于点.
求让:
【变式训练1】 P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.
【变式训练2】已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M.请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论.
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;
类型四、旋转模型
例.如图1,,,,、相交于点,连接.
(1)求证:,并用含的式子表示的度数;
(2)当时,取,的中点分别为点、,连接,,,如图2,判断的形状,并加以证明.
【变式训练1】四边形是由等边和顶角为的等腰排成,将一个角顶点放在处,将角绕点旋转,该交两边分别交直线、于、,交直线于、两点.
(1)当、都在线段上时(如图1),请证明:;
(2)当点在边的延长线上时(如图2),请你写出线段,和之间的数量关系,并证明你的结论;
(3)在(1)的条件下,若,,请直接写出的长为 .
【变式训练2】(1)问题发现:
如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:
①∠AEB的度数为 °;
②线段AD、BE之间的数量关系是 .
(2)拓展研究:
如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点 A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.
(3)探究发现:
图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.
【变式训练3】如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
(1)观察猜想:图1中,线段与的数量关系是______,位置关系是______.
(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
类型五、手拉手模型
例.在等边中,点D在AB上,点E在BC上,将线段DE绕点D逆时针旋转60°得到线段DF,连接CF.
(1)如图(1),点D是AB的中点,点E与点C重合,连接AF.若,求AF的长;
(2)如图(2),点G在AC上且,求证:;
(3)如图(3),,,连接AF.过点F作AF的垂线交AC于点P,连接BP、DP.将沿着BP翻折得到,连接QC.当的周长最小时,直接写出的面积.
【变式训练1】△ACB和△DCE是共顶点C的两个大小不一样的等边三角形.
(1)问题发现:
如图1,若点A,D,E在同一直线上,连接AE,BE.
①求证:△ACD≌△BCE;②求∠AEB的度数.
(2)类比探究:如图2,点B、D、E在同一直线上,连接AE,AD,BE,CM为△DCE中DE边上的高,请求∠ADB的度数及线段DB,AD,DM之间的数量关系,并说明理由.
(3)拓展延伸:如图3,若设AD(或其延长线)与BE的所夹锐角为α,则你认为α为多少度,并证明.
【变式训练2】(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰直角△ABE和等腰直角△ACD,使AE=AB,AD=AC,∠BAE=∠CAD=90°,连接BD,CE,试猜想BD与CE的大小关系,不需要证明.
【深入探究】(2)如图2,四边形ABCD中,AB=5,BC=2,∠ABC=∠ACD=∠ADC=45°,求BD2的值;甲同学受到第一问的启发构造了如图所示的一个和△ABD全等的三角形,将BD进行转化再计算,请你准确的叙述辅助线的作法,再计算;
【变式思考】(3)如图3,四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,AD=6,BD=10,则CD= .
【变式训练3】(1)问题发现:
如图1,和均为等腰直角三角形,,连接,,点、、在同一条直线上,则的度数为__________,线段、之间的数量关系__________;
(2)拓展探究:
如图2,和均为等腰直角三角形,,连接,,点、、不在一条直线上,请判断线段、之间的数量关系和位置关系,并说明理由.
(3)解决问题:
如图3,和均为等腰三角形,,则直线和的夹角为__________.(请用含的式子表示)
类型六、一线三角模型
例.在中,,,直线MN经过点C且于D,于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:
①≌;
②;
(2)当直线MN烧点C旋转到图2的位置时,求证:;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
【变式训练1】【问题解决】
(1)已知△ABC中,AB=AC,D,A,E三点都在直线l上,且有∠BDA=∠AEC=∠BAC.如图①,当∠BAC=90°时,线段DE,BD,CE的数量关系为:______________;
【类比探究】
(2)如图②,在(1)的条件下,当0°
相关试卷
这是一份沪教版八年级数学下册期中期末满分冲刺卷第一次月考卷02(原卷版+解析),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份沪教版八年级数学下册期中期末满分冲刺卷专题08梯形(原卷版+解析),共38页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份沪教版八年级数学下册期中期末满分冲刺卷专题02一次函数(难点)(原卷版+解析),共46页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://m.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)