年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    [数学][期末]湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷

    [数学][期末]湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷第1页
    [数学][期末]湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷第2页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    [数学][期末]湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷

    展开

    这是一份[数学][期末]湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷,共5页。
    考试时间:分钟 满分:分
    *注意事项:
    1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡
    第Ⅰ卷 客观题
    第Ⅰ卷的注释
    一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。(共8题;共40分)
    1. 已知是虚数单位, , 则复数的模为( )
    A . B . C . D .
    2. 已知平面向量 , 的夹角为 , , , 则( )
    A . B . C . D .
    3. 在一次数学测试中,高一某班名学生成绩的平均分为 , 方差为 , 则下列四个数中不可能是该班数学成绩的是( )
    A . B . C . D .
    4. , 为两个不同的平面, , 为两条不同的直线,下列说法中正确的个数是( )若 , , 则
    若 , , 则
    若 , , 则
    若 , , , 则
    A . B . C . D .
    5. 已知棱长为的正方体中,、分别为和的中点,则到平面的距离为( )
    A . B . C . D .
    6. 已知在中,满足 , 点在边上,且平分 , , 则的最大值为( )
    A . B . C . D .
    7. 已知为三角形内一点,且满足和 , 则角为( )
    A . B . C . D .
    8. 在正三棱锥中,、分别为、的中点,为棱上的一点,且 , , 若 , 则此正三棱锥的外接球的表面积为( )
    A . B . C . D .
    二、多选题:本题共3小题,共15分。在每小题给出的选项中,有多项符合题目要求。(共3题;共15分)
    9. 已知为虚数单位,以下说法正确的是( )
    A . 复数在复平面对应的点在第一象限 B . 若复数 , 满足 , 则 C . 若为纯虚数,则实数 D . 复数满足 , 则
    10. 在中,角 , , 所对的边分别是 , , , 下列说法正确的是( )
    A . 若 , 则是等腰三角形 B . 若为锐角三角形,则 C . 若 , , , 则满足条件的三角形有个 D . 若不是直角三角形,则
    11. 已知正方体的棱长为 , , 分别为 , 的中点,且与正方体的内切球为球心交于 , 两点,则下列说法正确的是( )
    A . 线段的长为 B . 三棱锥的体积为 C . 过 , , 三点的平面截正方体所得的截面面积为 D . 设为球上任意一点,则的范围为
    第Ⅱ卷 主观题
    第Ⅱ卷的注释
    三、填空题:本题共3小题,每小题5分,共15分。(共3题;共15分)
    12. 某歌手在一次比赛中评委给分为、、、、、、、十分制则该歌手得分的第七十五百分位数是____________________.
    13. 如图所示,是的中点, , 是平行四边形内含边界的一点,且、 , 则当时,的范围是____________________。
    14. 已知在三角形中,角、、的对边分别为、、 , 且 , 角为锐角,向量与共线,
    且 , 则三角形的周长为 .
    四、解答题:本题共5小题,共60分。解答应写出文字说明,证明过程或演算步骤。(共5题;共60分)
    15. 已知向量 ,
    (1) 若与垂直,求的值
    (2) 若与共线,求的值。
    16. 如图,在四棱锥中,底面 , , , , , 点为棱的中点.
    (1) 证明:平面
    (2) 求直线与平面所成角的大小.
    17. 已知在中,角 , , 的对边分别为 , , , 且
    (1) 求
    (2) 若为锐角三角形,且 , 求面积的取值范围.
    18. 随着社会的进步、科技的发展,人民对自己生活的环境要求越来越高,尤其是居住环境的环保和绿化受到每一位市民的关注,因此,年月日,生活垃圾分类制度入法,提倡每位居民做好垃圾分类储存、分类投放,方便工作人员依分类搬运,提高垃圾的资源价值和经济价值,力争物尽其用某市环卫局在、两个小区分别随机抽取户,进行生活垃圾分类调研工作,依据住户情况对近期一周天进行生活垃圾分类占用时间统计如下表:
    (1) 分别计算、小区每周进行生活垃圾分类所用时间的平均值和方差以及、两个小区抽取的一共户每周进行生活垃圾分类所用时间的平均值和方差
    (2) 如果两个小区住户均按照户计算,小区的垃圾也要按照垃圾分类搬运,市环卫局与两个小区物业及住户协商,初步实施下列方案:
    小区方案:号召住户生活垃圾分类“从我做起”,为了利国利民,每位住户至少需要一名工作人员进行检查和纠错生活垃圾分类,每位工作人员月工资按照元按照天计算标准计算,则每位住户每月至少需要承担的生活垃圾分类费是多少
    小区方案:为了方便住户,住户只需要将垃圾堆放在垃圾点,物业让专职人员进行生活垃圾分类,一位专职工作人员对生活垃圾分类的效果相当于位普通居民对生活垃圾分类效果,每位专职工作人员每天工作小时月工资按照元按照天计算标准计算,则每位住户每月至少需要承担的生活垃圾分类费是多少
    市环卫局与两个小区物业及住户协商分别试行一个月,根据实施情况,试分析哪个方案惠民力度大,值得进行推广
    19. 如图,在三棱柱中,底面是边长为的等边三角形, , , 分别是线段、的中点,在平面内的射影为 .
    (1) 求证:平面
    (2) 若点为棱的中点,求三棱锥的体积
    (3) 在线段上是否存在点 , 使二面角的大小为 , 若存在,请求出的长度,若不存在,请说明理由. 住户编号
    小区分钟
    小区分钟

    相关试卷

    2023-2024学年湖北省武汉市常青联合体高二下学期期末考试数学试卷(含答案):

    这是一份2023-2024学年湖北省武汉市常青联合体高二下学期期末考试数学试卷(含答案),共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年湖北省武汉市常青联合体高一下学期期末考试数学试卷(含答案):

    这是一份2023-2024学年湖北省武汉市常青联合体高一下学期期末考试数学试卷(含答案),共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷(Word版附答案):

    这是一份湖北省武汉市常青联合体2023-2024学年高一下学期期末考试数学试卷(Word版附答案),共11页。试卷主要包含了已知是虚数单位,,则复数的模为,已知平面向量的夹角为,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map