年终活动
搜索
    上传资料 赚现金

    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析)

    立即下载
    加入资料篮
    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析)第1页
    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析)第2页
    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析)第3页
    还剩60页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析)

    展开

    这是一份中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析),共63页。试卷主要包含了,与y轴相交于点C,两点,直线x=3与x轴交于点C,综合与探究等内容,欢迎下载使用。
    一.平行四边形的存在性
    1.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
    (1)求抛物线的函数表达式;
    (2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;
    (3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.
    2.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
    (1)求抛物线的表达式;
    (2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
    ①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
    ②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
    3.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).
    (1)求二次函数的表达式;
    (2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;
    (3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.
    4.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.
    (1)求抛物线的解析式和点C的坐标;
    (2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)
    (3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)
    5.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(﹣1,0).
    (1)求二次函数的表达式;
    (2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.
    ①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
    ②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
    二.矩形的存在性
    6.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
    (1)求a,c的值;
    (2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
    (3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
    8.(2021•齐齐哈尔)综合与探究
    如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
    (1)求抛物线的解析式;
    (2)抛物线上C、D两点之间的距离是 2 ;
    (3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
    (4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
    9.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
    10.(2023•秦都区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点(点B在点A的右侧),与y轴交于点C,且OC=3OA,点D为抛物线的对称轴与x轴的交点,连接CD.
    (1)求抛物线的函数表达式;
    (2)点F为坐标平面内一点,在第一象限的抛物线上是否存在点E,使得以点C、D、E、F为顶点的四边形是以CD为边的矩形?若存在,请求出符合条件的点E的横坐标;若不存在,请说明理由.
    7.(2022•元宝区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
    (1)求抛物线的解析式;
    (2)抛物线上C、D两点之间的距离是 11 ;
    (3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
    (4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
    8.(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.
    (1)求该抛物线的解析式;
    (2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.
    三.菱形的存在性
    9.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
    (1)求抛物线的解析式及点B的坐标.
    (2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
    (3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
    10.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
    (1)求二次函数解析式;
    (2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
    11.(2021•鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.
    (1)求A,B,C三点的坐标;
    (2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;
    (3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
    12.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
    (1)求抛物线的解析式;
    (2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
    (3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
    13.(2021•娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
    (1)求b、c的值;
    (2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
    ①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
    ②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
    14.(2021•山西)综合与探究
    如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.
    (1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.
    (2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.
    ①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;
    ②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.
    15.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
    (1)求这个二次函数的表达式;
    (2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;
    ②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
    挑战2023年中考数学解答题压轴真题汇编
    专题05 二次函数中特殊平行四边形存在性问题
    一.平行四边形的存在性
    1.(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
    (1)求抛物线的函数表达式;
    (2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;
    (3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.
    【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).
    ∴,
    ∴.
    ∴抛物线的函数表达式为y=﹣;
    (2)∵A(4,0),B(0,3),
    ∴OA=4,OB=3,
    由勾股定理得,AB=5,
    ∵PQ⊥OA,
    ∴PQ∥OB,
    ∴△AQM∽△AOB,
    ∴MQ:AQ:AM=3:4:5,
    ∴AM=,,
    ∴PM+,
    ∵B(0,3),A(4,0),
    ∴lAB:y=﹣,
    ∴设P(m,﹣),M(m,﹣),Q(m,0),
    ∴PM+2MQ=﹣=﹣,
    ∵﹣,
    ∴开口向下,0<m<4,
    ∴当m=1时,PM+的最大值为,此时P(1,);
    (3)由y=﹣知,对称轴x=,
    ∴P'(2,),
    ∵直线l:x=4,
    ∴抛物线向右平移个单位,
    ∴平移后抛物线解析式为y'=﹣,
    设D(4,t),C(c,﹣),
    ①AP'与DC为对角线时,

    ∴,
    ∴D(4,),
    ②P'D与AC为对角线时,

    ∴,
    ∴D(4,﹣),
    ③AD与P'C为对角线时,

    ∴,
    ∴D(4,),
    综上:D(4,)或(4,﹣)或(4,).
    2.(2022•郴州)已知抛物线y=x2+bx+c与x轴相交于点A(﹣1,0),B(3,0),与y轴相交于点C.
    (1)求抛物线的表达式;
    (2)如图1,将直线BC向上平移,得到过原点O的直线MN.点D是直线MN上任意一点.
    ①当点D在抛物线的对称轴l上时,连接CD,与x轴相交于点E,求线段OE的长;
    ②如图2,在抛物线的对称轴l上是否存在点F,使得以B,C,D,F为顶点的四边形是平行四边形?若存在,求出点F与点D的坐标;若不存在,请说明理由.
    【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=x2+bx+c得,

    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)①由(1)可知,C(0,﹣3),
    设直线BC的解析式为y=kx+m,
    将C(0,﹣3),B(3,0)代入得,

    ∴,
    ∴直线BC的解析式为y=x﹣3,
    ∴直线MN的解析式为y=x,
    ∵抛物线的对称轴为x=﹣=﹣=1,
    把x=1代入y=x,得y=1,
    ∴D(1,1),
    方法一:
    设直线CD的解析式为y=k1x+b1,
    将C(0,﹣3),D(1,1)代 入得,

    解得,
    ∴直线CD的解析式为y=4x﹣3,
    当y=0时,4x﹣3=0,
    ∴x=,
    ∴E(,0),
    ∴OE=.
    方法二:
    由勾股定理得OD==,BC==3,
    ∵BC∥MN,
    ∴△DEO∽△CEB,
    ∴,
    设OE=x,则BE=3﹣x,
    ∴,
    解得x=,
    ∴OE=.
    ②存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
    理由如下:
    (Ⅰ)若平行四边形以BC为边时,
    由BC∥FD可知,FD在直线MN上,
    ∴点F是直线MN与对称轴l的交点,即F(1,1),
    由点D在直线MN上,设D(t,t),
    如图,若四边形BCFD是平行四边形,则DF=BC,
    过点D作y轴的垂线交对称轴l于点G,则G(1,t),
    ∵BC∥MN,
    ∴∠OBC=∠DOB,
    ∵GD∥x轴,
    ∴∠GDF=∠DOB,
    ∴∠OBC=∠GDF,
    又∵∠BOC=∠DGF=90°,
    ∴△DGF≌△BOC(AAS),
    ∴GD=OB,GF=OC,
    ∵GD=t﹣1,OB=3,
    ∴t﹣1=3,
    ∴t=4,
    ∴D(4,4),
    如图,若四边形BCDF是平行四边形,则DF=CB,
    同理可证△DKF≌△COB(AAS),
    ∴KD=OC,
    ∵KD=1﹣t,OC=3,
    ∴1﹣t=3,
    ∴t=﹣2,
    ∴D(﹣2,﹣2);
    (Ⅱ)若平行四边形以BC为对角线时,
    由于D在BC的上方,则点F一定在BC的下方,
    如图,四边形BFCD为平行四边形,
    设D(t,t),F(1,n),
    同理可证△DHC≌△BPF(AAS),
    ∴DH=BP,HC=PF,
    ∵DH=t,BP=3﹣1=2,HC=t﹣(﹣3)=t+3,PF=0﹣n=﹣n,
    ∴,
    ∴,
    ∴D(2,2),F(1,﹣5),
    综上所述,存在点F,使得以B,C,D,F为顶点的四边形是平行四边形.
    当点F的坐标为(1,1)时,点D的坐标为(4,4)或(﹣2,﹣2);
    当点F的坐标为(1,﹣5)时,点D的坐标为(2,2).
    3.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).
    (1)求二次函数的表达式;
    (2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;
    (3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.
    【解答】解:(1)∵二次函数的最小值为﹣1,点M(1,m)是其对称轴上一点,
    ∴二次函数顶点为(1,﹣1),
    设二次函数解析式为y=a(x﹣1)2﹣1,
    将点O(0,0)代入得,a﹣1=0,
    ∴a=1,
    ∴y=(x﹣1)2﹣1=x2﹣2x;
    (2)连接OP,
    当y=0时,x2﹣2x=0,
    ∴x=0或2,
    ∴A(2,0),
    ∵点P在抛物线y=x2﹣2x上,
    ∴点P的纵坐标为t2﹣2t,
    ∴S=S△AOB+S△OAP﹣S△OBP
    =+(﹣t2+2t)﹣t
    =﹣t2++1;
    (3)设N(n,n2﹣2n),
    当AB为对角线时,由中点坐标公式得,2+0=1+n,
    ∴n=1,
    ∴N(1,﹣1),
    当AM为对角线时,由中点坐标公式得,2+1=n+0,
    ∴n=3,
    ∴N(3,3),
    当AN为对角线时,由中点坐标公式得,2+n=0+1,
    ∴n=﹣1,
    ∴N(﹣1,3),
    综上:N(1,﹣1)或(3,3)或(﹣1,3).
    4.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x轴的另一个交点为A,与y轴相交于点C.
    (1)求抛物线的解析式和点C的坐标;
    (2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)
    (3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)
    【解答】解:(1)将B(3,0),D(﹣2,﹣)代入y=ax2+x+c,
    ∴,
    解得,
    ∴y=﹣x2+x+,
    令x=0,则y=,
    ∴C(0,);
    (2)作直线BC,过M点作MN∥y轴交BC于点N,
    设直线BC的解析式为y=kx+b,
    ∴,
    解得,
    ∴y=﹣x+
    设M(m,﹣m2+m+),则N(m,﹣m+),
    ∴MN=﹣m2+m,
    ∴S△MBC=•MN•OB=﹣(m﹣)2+,
    当m=时,△MBC的面积有最大值,
    此时M(,);
    (3)令y=0,则﹣x2+x+=0,
    解得x=3或x=﹣1,
    ∴A(﹣1,0),
    设Q(0,t),P(m,﹣m2+m+),
    ①当AB为平行四边形的对角线时,m=3﹣1=2,
    ∴P(2,);
    ②当AQ为平行四边形的对角线时,3+m=﹣1,
    解得m=﹣4,
    ∴P(﹣4,﹣);
    ③当AP为平行四边形的对角线时,m﹣1=3,
    解得m=4,
    ∴P(4,﹣);
    综上所述:P点坐标为(2,)或(﹣4,﹣)或(4,﹣).
    5.(2022•资阳)已知二次函数图象的顶点坐标为A(1,4),且与x轴交于点B(﹣1,0).
    (1)求二次函数的表达式;
    (2)如图,将二次函数图象绕x轴的正半轴上一点P(m,0)旋转180°,此时点A、B的对应点分别为点C、D.
    ①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
    ②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
    【解答】解:(1)∵二次函数的图象的顶点坐标为A(1,4),
    ∴设二次函数的表达式为y=a(x﹣1)2+4,
    又∵B(﹣1,0),
    ∴0=a(﹣1﹣1)2+4,
    解得:a=﹣1,
    ∴y=﹣(x﹣1)2+4(或y=﹣x2+2x+3);
    (2)①∵点P在x轴正半轴上,
    ∴m>0,
    ∴BP=m+1,
    由旋转可得:BD=2BP,AC=2AP,
    ∴四边形ABCD是平行四边形.
    ∴BD=2(m+1),
    过点A(1,4)作AE⊥x轴于点E,
    ∴BE=2,AE=4,
    在Rt△ABE中,AB2=BE2+AE2=22+42=20,
    当四边形ABCD为矩形时,AD⊥AB,
    ∴∠BAD=∠BEA=90°,
    又∠ABE=∠DBA,
    ∴△BAE∽△BDA,
    ∴AB2=BE⋅BD,
    ∴4(m+1)=20,
    解得m=4;
    ②由题可得点A(1,4)与点C关于点P(4,0)成中心对称,
    ∴C(7,﹣4),
    ∵点M在直线x=4上,
    ∴点M的横坐标为4,
    存在以点B、C、M、Q为顶点的平行四边形,
    1)当以BC为边时,平行四边形为BCMQ,点C向左平移8个单位,与点B的横坐标相同,
    ∴将点M向左平移8个单位后,与点Q的横坐标相同,
    ∴Q(﹣4,y1)代入y=﹣x2+2x+3,
    解得:y1=﹣21,
    ∴Q(﹣4,﹣21),
    2)当以BC为边时,平行四边形为BCQM,点B向右平移8个单位,与点C的横坐标相同,
    ∴将M向右平移8个单位后,与点Q的横坐标相同,
    ∴Q(12,y2)代入y=﹣x2+2x+3,
    解得:y2=﹣117,
    ∴Q(12,﹣117),
    3)当以BC为对角线时,点M向左平移5个单位,与点B的横坐标相同,
    ∴点C向左平移5个单位后,与点Q的横坐标相同,
    ∴Q(2,y3)代入y=﹣x2+2x+3,
    得:y3=3,
    ∴Q(2,3),
    综上所述,存在符合条件的点Q,其坐标为(﹣4,﹣21)或(2,3)或(12,﹣117)
    二.矩形的存在性
    6.(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.
    (1)求a,c的值;
    (2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;
    (3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.
    【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:
    解得:;
    (2)由(1)知:抛物线解析式为:y=﹣x2+x+4,
    设直线AB的解析式为:y=kx+b,
    则,解得:,
    ∴AB的解析式为:y=2x+4,
    设直线DE的解析式为:y=mx,
    ∴2x+4=mx,
    ∴x=,
    当x=3时,y=3m,
    ∴E(3,3m),
    ∵△BDO与△OCE的面积相等,CE⊥OC,
    ∴•3•(﹣3m)=•4•,
    ∴9m2﹣18m﹣16=0,
    ∴(3m+2)(3m﹣8)=0,
    ∴m1=﹣,m2=(舍),
    ∴直线DE的解析式为:y=﹣x;
    (3)存在,
    B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:
    设P(t,﹣t2+t+4),
    ①如图1,过点P作PH⊥y轴于H,
    ∵四边形BPGF是矩形,
    ∴BP=FG,∠PBF=∠BFG=90°,
    ∴∠CFG+∠BFO=∠BFO+∠OBF=∠CFG+∠CGF=∠OBF+∠PBH=90°,
    ∴∠PBH=∠OFB=∠CGF,
    ∵∠PHB=∠FCG=90°,
    ∴△PHB≌△FCG(AAS),
    ∴PH=CF,
    ∴CF=PH=t,OF=3﹣t,
    ∵∠PBH=∠OFB,
    ∴=,即=,
    解得:t1=0(舍),t2=1,
    ∴F(2,0);
    ②如图2,过点G作GN⊥y轴于N,过点P作PM⊥x轴于M,
    同①可得:NG=FM=3,OF=t﹣3,
    ∵∠OFB=∠FPM,
    ∴tan∠OFB=tan∠FPM,
    ∴=,即=,
    解得:t1=,t2=(舍),
    ∴F(,0);
    综上,点F的坐标为(2,0)或(,0).
    8.(2021•齐齐哈尔)综合与探究
    如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
    (1)求抛物线的解析式;
    (2)抛物线上C、D两点之间的距离是 2 ;
    (3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
    (4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
    【解答】解:(1)∵OA=1,
    ∴A(﹣1,0),
    又∵对称轴为x=2,
    ∴B(5,0),
    将A,B代入解析式得:

    解得,
    ∴,自变量x为全体实数;
    (2)由(1)得:C(0,),D(2,),
    ∴CD=,
    故答案为2;
    (3)∵B(5,0),C(0,),
    ∴直线BC的解析式为:,
    设E(x,),且0<x<5,
    作EF∥y轴交BC于点F,
    则F(x,),
    ∴EF=﹣()=,
    ∴,
    当x=时,S△BCE有最大值为;
    (4)设P(2,y),Q(m,n),
    由(1)知B(5,0),C(0,),
    若BC为矩形的对角线,
    由中点坐标公式得:,
    解得:,
    又∵∠BPC=90°,
    ∴PC2+PB2=BC2,
    即:,
    解得y=4或y=﹣,
    ∴n=或n=4,
    ∴Q(3,)或Q(3,4),
    若BP为矩形的对角线,
    由中点坐标公式得,
    解得,
    又∵∠BCP=90°,
    BC2+CP2=BP2,
    即:,
    解得y=,
    ∴Q(7,4),
    若BQ为矩形的对角线,
    由中点坐标公式得,
    解得:,
    又∵∠BCQ=90°,
    ∴BC2+CQ2=BQ2,
    即:,
    解得n=,
    ∴Q(﹣3,﹣),
    综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).
    9.(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.
    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
    【解答】解:(1)∵抛物线的对称轴是直线x=﹣1,抛物线交x轴于点A,B(1,0),
    ∴A(﹣3,0),
    ∴OA=OC=3,
    ∴C(0,3),
    ∴可以假设抛物线的解析式为y=a(x+3)(x﹣1),
    把(0,3)代入抛物线的解析式,得a=﹣1,
    ∴抛物线的解析式为y=﹣x2﹣2x+3;
    (2)如图(2)中,连接OP.设P(m,﹣m2﹣2m+3),
    S=S△PAO+S△POC+S△OBC,
    =×3×(﹣m2﹣2m+3)+×3×(﹣m)+×1×3
    =(﹣m2﹣3m+4)
    =﹣(m+)2+,
    ∵﹣<0,
    ∴当m=﹣时,S的值最大,最大值为,此时P(﹣,);
    (3)存在,理由如下:
    如图3﹣1中,当点N在y轴上时,四边形PMCN是矩形,此时P(﹣1,4),N(0,4);
    如图3﹣2中,当四边形PMCN是矩形时,设M(﹣1,n),P(t,﹣t2﹣2t+3),则N(t+1,0),
    由题意,,
    消去n得,3t2+5t﹣10=0,
    解得t=,
    ∴P(,),N(,0)或P′(,),N′(,0).
    综上所述,满足条件的点P(﹣1,4),N(0,4)或P(,),N(,0)或P′(,),N′(,0).
    10.(2023•秦都区校级二模)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点(点B在点A的右侧),与y轴交于点C,且OC=3OA,点D为抛物线的对称轴与x轴的交点,连接CD.
    (1)求抛物线的函数表达式;
    (2)点F为坐标平面内一点,在第一象限的抛物线上是否存在点E,使得以点C、D、E、F为顶点的四边形是以CD为边的矩形?若存在,请求出符合条件的点E的横坐标;若不存在,请说明理由.
    【解答】解:(1)∵OC=3OA=3,则点C(0,3),
    则抛物线的表达式为:y=﹣x2+bx+3,
    将点A的坐标代入上式得:0=﹣1﹣b+3,
    解得:b=2,
    故抛物线的表达式为:y=﹣x2+2x+3;
    (2)由抛物线的表达式知,其对称轴为x=1,即点D(1,0),则DO=1,
    当矩形为CDFE时,如下图,过点E作ME⊥y轴于点M,
    ∵四边形CDFE为矩形,则∠ECD=90°,
    ∴∠MEC+∠MCE=90°,∠MCE+∠OCD=90°,
    ∴∠MEC=∠OCD,
    ∴tan∠MEC=tan∠OCD=,
    故设MC=m,则ME=3m,
    则点E(3m,3+m),
    将点E的坐标代入抛物线表达式得:3+m=﹣(3m)2+2×(3m)+3,
    解得:m=0(舍去)或,
    则点E的横坐标为:3m=;
    当矩形为CDEF时,如下图,过点E作ME⊥x轴于点M,
    同理可设:点E(3m+1,m),
    将点E的坐标代入抛物线表达式得:m=﹣(3m+1)2+2×(3m+1)+3,
    解得:m=(负值已舍去),
    则点E的横坐标为:3m+1=;
    综上,点E的横坐标为:或.
    7.(2022•元宝区校级二模)如图,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.
    (1)求抛物线的解析式;
    (2)抛物线上C、D两点之间的距离是 11 ;
    (3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;
    (4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.
    【解答】解:(1)∵OA=1,
    ∴A(﹣1,0),
    又∵对称轴为x=2,
    ∴B(5,0),
    将A,B代入解析式得:

    解得,
    ∴,自变量x为全体实数;
    (2)由(1)得:C(0,3),D(2,),
    ∴CD==,
    故答案为;
    (3)∵B(5,0),C(0,3),
    ∴直线BC的解析式为:y=,
    设E(x,﹣),且0<x<5,
    作EF∥y轴交BC于点F,
    则F(x,),
    ∴EF=﹣﹣()=,
    ∴,
    ∴×EF=5×[﹣]=﹣x(x﹣3)
    当x=时,S△BCE有最大值为;
    (4)设P(2,y),Q(m,n),
    由(1)知B(5,0),C(0,3),
    若BC为矩形的对角线,
    由中点坐标公式得:,
    解得:,
    又∵∠BPC=90°,
    ∴PC2+PB2=BC2,
    即:22+(3﹣y)2+32+y2=52+32,
    解得y=4或y=﹣,
    ∴n=或n=4,
    ∴Q(3,)或Q(3,4),
    若BP为矩形的对角线,
    由中点坐标公式得,
    解得,
    又∵∠BCP=90°,
    BC2+CP2=BP2,
    即:,
    解得y=,
    ∴Q(7,4),
    若BQ为矩形的对角线,
    由中点坐标公式得,
    解得:,
    又∵∠BCQ=90°,
    ∴BC2+CQ2=BQ2,
    即:,
    解得n=,
    ∴Q(﹣3,﹣),
    综上,点Q的坐标为(3,)或(3,4),或(7,4)或(﹣3,﹣).
    8.(2022•鱼峰区模拟)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.
    (1)求该抛物线的解析式;
    (2)在第二象限内是否存在一点M,使得四边形ABCM为矩形?如果存在,求出点M的坐标;如果不存在,请说明理由.
    【解答】解:(1)把A(0,﹣2),B(4,0)代入抛物线y=x2+bx+c,
    得,
    解得:,
    ∴该抛物线的解析式为y=x2﹣x﹣2;
    (2)存在.过点C作AB的平行线,过点A作BC的平行线,两条直线相交于M,则M即为所求.
    在y=﹣2x+8中,令x=0,则y=8,
    ∴C(0,8),
    ∵A(0,﹣2),B(4,0),
    ∴AB2=42+22=20,BC2=42+82=80,AC2=102=100,
    ∴AC2=AB2+BC2,
    ∴∠ABC=90°,
    ∵CM∥AB,AM∥BC,
    ∴四边形ABCM是矩形,
    设直线AB的解析式为y=kx+m,
    则,
    解得:,
    ∴直线AB的解析式为y=x﹣2,
    ∵CM∥AB,
    ∴直线CM的解析式为y=x+8,
    ∵AM∥BC,
    ∴直线AM的解析式为y=﹣2x﹣2,
    联立方程组,
    解得:,
    ∴点M坐标为(﹣4,6).
    解法二:∵四边形ABCM是矩形,
    ∴xB﹣xA=xC﹣xM,yB﹣yA=yC﹣yM,
    ∵A(0,﹣2),B(4,0),C(0,8),M(a,b),
    ∴4﹣0=0﹣a,0﹣(﹣2)=8﹣b,
    ∴a=﹣4,b=6,
    ∴M(﹣4,6).
    三.菱形的存在性
    9.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.
    (1)求抛物线的解析式及点B的坐标.
    (2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.
    (3)动点P以每秒个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.
    【解答】解:(1)由题意得,

    ∴,
    ∴y=x2+2x﹣3,
    当y=0时,x2+2x﹣3=0,
    ∴x1=1,x2=﹣3,
    ∴B(﹣3,0);
    (2)设直线BC的解析式为:y=kx+b,
    ∴,
    ∴,
    ∴y=﹣x﹣3,
    设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),
    ∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,
    ∴当m=﹣时,PQ最大=;
    (3)如图1,
    ∵B(﹣3,0),C(0,﹣3),
    ∴OB=OC=3,
    ∴∠OCB=∠OBC=45°,
    作PD⊥y轴于D,
    ∴CD=PD=PC•sin∠OCB==t,
    当BM=PM时,
    ∴∠MPB=∠OBC=45°,
    ∵∠PMO=∠PDO=∠MOD=90°,
    ∴四边形OMPD是矩形,
    ∴OM=PD=t,
    由BM+OM=OB得,
    ∴2t=3,
    ∴t=,
    ∴P(﹣,﹣),
    ∴N(﹣3,﹣),
    如图2,
    当PM=PB时,作PD⊥y轴于D,作PE⊥x轴于E,
    ∴BM=2BE,
    可得四边形PDOE是矩形,
    ∴OE=PD=t,
    ∴BE=3﹣t,
    ∴t=2(3﹣t),
    ∴t=2,
    ∴P(﹣2,﹣1),
    ∴N(﹣2,1),
    如图3,
    当PB=MB时,
    3﹣=t,
    ∴t=6﹣3,
    ∴P(3,3﹣3),
    ∴N(0,3﹣3),
    综上所述:N(﹣3,﹣)或(﹣2,1)或(0,3﹣3).
    10.(2021•湘潭)如图,一次函数y=x﹣图象与坐标轴交于点A、B,二次函数y=x2+bx+c图象过A、B两点.
    (1)求二次函数解析式;
    (2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.
    【解答】解:(1)在y=x﹣中,令x=0得y=﹣,令y=0得x=3,
    ∴A(3,0),B(0,﹣),
    ∵二次函数y=x2+bx+c图象过A、B两点,
    ∴,解得,
    ∴二次函数解析式为y=x2﹣x﹣;
    (2)存在,理由如下:
    由二次函数y=x2﹣x﹣可得其对称轴为直线x==1,
    设P(1,m),Q(n,n2﹣n﹣),而B(0,﹣),
    ∵C与B关于直线x=1对称,
    ∴C(2,﹣),
    ①当BC、PQ为对角线时,如图:
    此时BC的中点即是PQ的中点,即,
    解得,
    ∴当P(1,﹣),Q(1,﹣)时,四边形BQCP是平行四边形,
    由P(1,﹣),B(0,﹣),C(2,﹣)可得PB2==PC2,
    ∴PB=PC,
    ∴四边形BQCP是菱形,
    ∴此时Q(1,﹣);
    ②BP、CQ为对角线时,如图:
    同理BP、CQ中点重合,可得,
    解得,
    ∴当P(1,0),Q(﹣1,0)时,四边形BCPQ是平行四边形,
    由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
    ∴四边形BCPQ是菱形,
    ∴此时Q(﹣1,0);
    ③以BQ、CP为对角线,如图:
    BQ、CP中点重合,可得,
    解得,
    ∴P(1,0),Q(3,0)时,四边形BCQP是平行四边形,
    由P(1,0),B(0,﹣),C(2,﹣)可得BC2=4=PC2,
    ∴四边形BCQP是菱形,
    ∴此时Q(3,0);
    综上所述,Q的坐标为:(1,﹣)或(﹣1,0)或(3,0).
    11.(2021•鄂尔多斯)如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.
    (1)求A,B,C三点的坐标;
    (2)连接AC,直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,连接OD.当OD⊥AC时,求线段DE的长;
    (3)点M在y轴上,点N在直线AC上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
    【解答】解:(1)在y=x2+2x﹣8中,令y=0,得x2+2x﹣8=0,
    解得:x1=﹣4,x2=2,
    ∴A(﹣4,0),B(2,0),
    令x=0,得y=﹣8,
    ∴C(0,﹣8);
    (2)设直线AC的解析式为y=kx+b,
    ∵A(﹣4,0),C(0,﹣8),
    ∴,
    解得:,
    ∴直线AC的解析式为y=﹣2x﹣8,
    ∵直线x=m(﹣4<m<0)与该抛物线交于点E,与AC交于点D,
    ∴E(m,m2+2m﹣8),D(m,﹣2m﹣8),
    ∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m,
    设DE交x轴于点F,则F(m,0),
    ∴OF=﹣m,
    ∴AF=m﹣(﹣4)=m+4,DF=2m+8,
    ∵OD⊥AC,EF⊥OA,
    ∴∠ODA=∠OFD=∠DFA=∠AOC=90°,
    ∴∠DOF+∠COD=∠OCD+∠COD=90°,
    ∴∠DOF=∠OCD,
    ∴△ACO∽△DOF,
    ∴=,
    ∴OC•DF=OA•OF,
    ∴8(2m+8)=4(﹣m),
    解得:m=﹣,
    ∴DE=﹣m2﹣4m=﹣(﹣)2﹣4×(﹣)=;
    (3)存在,
    如图2,∵y=x2+2x﹣8=(x+1)2﹣9,
    抛物线对称轴为直线x=﹣1,
    ∵以C、M、N、P为顶点的四边形是菱形,
    ∴分三种情况:CM为对角线或CN为对角线或CP为对角线,
    ①当CP为对角线时,CM∥PN,CM=PN=CN,
    ∴N点为直线AC与抛物线对称轴的交点,即N(﹣1,﹣6),
    CN==,
    ∴CM=PN=,
    ∴M1(0,﹣8+),M2(0,﹣8﹣);
    ②当CN为对角线时,CM∥PN,CM=PN=CP,
    设CM=a,则M(0,﹣8+a),P(﹣1,﹣6﹣a),
    ∴(﹣1﹣0)2+(﹣6﹣a+8)2=a2,
    解得:a=,
    ∴M3(0,﹣),
    ③当CM为对角线时,PN与CM互相垂直平分,设P(﹣1,b),则N(1,b),M(0,2b+8),
    ∵N(1,b)在直线y=﹣2x﹣8上,
    ∴b=﹣2×1﹣8=﹣10,
    ∴M4(0,﹣12),
    综上所述,点M的坐标为:M1(0,﹣8+),M2(0,﹣8﹣),M3(0,﹣),M4(0,﹣12).
    12.(2021•通辽)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,交y轴于点C,动点P在抛物线的对称轴上.
    (1)求抛物线的解析式;
    (2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
    (3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
    【解答】解:(1)∵抛物线y=ax2+bx+3交x轴于A(3,0),B(﹣1,0)两点,
    ∴,
    解得:,
    ∴该抛物线的解析式为y=﹣x2+2x+3;
    (2)在y=﹣x2+2x+3中,令x=0,得y=3,
    ∴C(0,3),
    ∵△PBC的周长为:PB+PC+BC,BC是定值,
    ∴当PB+PC最小时,△PBC的周长最小.
    如图1,点A、B关于对称轴l对称,连接AC交l于点P,则点P为所求的点.
    ∵AP=BP,
    ∴△PBC周长的最小值是AC+BC,
    ∵A(3,0),B(﹣1,0),C(0,3),
    ∴AC=3,BC=.
    ∴△PBC周长的最小值是:3+.
    抛物线对称轴为直线x=﹣=1,
    设直线AC的解析式为y=kx+c,将A(3,0),C(0,3)代入,得:

    解得:,
    ∴直线AC的解析式为y=﹣x+3,
    ∴P(1,2);
    (3)存在.
    设P(1,t),Q(m,n)
    ∵A(3,0),C(0,3),
    则AC2=32+32=18,
    AP2=(1﹣3)2+t2=t2+4,
    PC2=12+(t﹣3)2=t2﹣6t+10,
    ∵四边形ACPQ是菱形,
    ∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,
    ①当以AP为对角线时,则CP=CA,如图2,
    ∴t2﹣6t+10=18,
    解得:t=3±,
    ∴P1(1,3﹣),P2(1,3+),
    ∵四边形ACPQ是菱形,
    ∴AP与CQ互相垂直平分,即AP与CQ的中点重合,
    当P1(1,3﹣)时,
    ∴=,=,
    解得:m=4,n=﹣,
    ∴Q1(4,﹣),
    当P2(1,3+)时,
    ∴=,=,
    解得:m=4,n=,
    ∴Q2(4,),
    ②以AC为对角线时,则PC=AP,如图3,
    ∴t2﹣6t+10=t2+4,
    解得:t=1,
    ∴P3(1,1),
    ∵四边形APCQ是菱形,
    ∴AC与PQ互相垂直平分,即AC与CQ中点重合,
    ∴=,=,
    解得:m=2,n=2,
    ∴Q3(2,2),
    ③当以CP为对角线时,则AP=AC,如图4,
    ∴t2+4=18,
    解得:t=±,
    ∴P4(1,),P5(1,﹣),
    ∵四边形ACQP是菱形,
    ∴AQ与CP互相垂直平分,即AQ与CP的中点重合,
    ∴=,=,
    解得:m=﹣2,n=3,
    ∴Q4(﹣2,3+),Q5(﹣2,3﹣),
    综上所述,符合条件的点Q的坐标为:Q1(4,﹣),Q2(4,),Q3(2,2),Q4(﹣2,3+),Q5(﹣2,3﹣).
    13.(2021•娄底)如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
    (1)求b、c的值;
    (2)点P(m,n)为抛物线上的动点,过P作x轴的垂线交直线l:y=x于点Q.
    ①当0<m<3时,求当P点到直线l:y=x的距离最大时m的值;
    ②是否存在m,使得以点O、C、P、Q为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
    【解答】解:(1)由二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),得:

    解得:,
    ∴y=x2﹣2x﹣3,
    ∴b=﹣2,c=﹣3.
    (2)①∵点P(m,n)在抛物线上y=x2﹣2x﹣3,
    ∴P(m,m2﹣2m﹣3),
    ∴PQ=m﹣(m2﹣2m﹣3)=﹣m2+3m+3=﹣(m﹣)2+,
    ∵过P作x轴的垂线交直线l:y=x于点Q,
    ∴Q(m,m),
    设点P到直线y=x的距离为h,
    ∵直线y=x是一三象限的角平分线,
    ∴PQ=h,
    ∴当P点到直线l:y=x的距离最大时,PQ取得最大值,
    ∴当m=时,PQ有最大值,
    ∴当P点到直线l:y=x的距离最大时,m的值为.
    ②∵抛物线与y轴交于点C,
    ∴x=0时,y=﹣3,
    ∴C(0,﹣3),
    ∵OC∥PQ,且以点O、C、P、Q为顶点的四边形是菱形,
    ∴PQ=OC,
    又∵OC=3,PQ=|﹣m2+3m+3|,
    ∴3=|﹣m2+3m+3|,
    解得:m1=0,m2=3,m3=,m4=,
    当m1=0时,PQ与OC重合,菱形不成立,舍去;
    当m2=3时,P(3,0),Q(3,3),
    此时,四边形OCPQ是平行四边形,OQ=,
    ∴OQ≠OC,平行四边形OCPQ不是菱形,舍去;
    当m3=时,Q(,),
    此时,四边形OCQP是平行四边形,OQ=,
    ∴CQ≠OC,平行四边形OCPQ不是菱形,舍去;
    当m4=时,Q(,),
    此时,四边形OCQP是平行四边形,OQ=,
    ∴OQ≠OC,平行四边形OCPQ不是菱形,舍去;
    综上所述:不存在m,使得以点O、C、P、Q为顶点的四边形是菱形.
    14.(2021•山西)综合与探究
    如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.
    (1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.
    (2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.
    ①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;
    ②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.
    【解答】解:(1)当y=0时,x2+2x﹣6=0,
    解得x1=﹣6,x2=2,
    ∴A(﹣6,0),B(2,0),
    当x=0时,y=﹣6,
    ∴C(0,﹣6),
    ∵A(﹣6,0),C(0,﹣6),
    ∴直线AC的函数表达式为y=﹣x﹣6,
    ∵B(2,0),C(0,﹣6),
    ∴直线BC的函数表达式为y=3x﹣6;
    (2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
    ∵B(2,0),C(0,﹣6),
    ∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,
    ∵DE∥BC,
    ∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,
    分两种情况:
    如图,当BD=BC时,四边形BDEC为菱形,
    ∴BD2=BC2,
    ∴(m﹣2)2+(m+6)2=40,
    解得:m1=﹣4,m2=0(舍去),
    ∴点D的坐标为(﹣4,﹣2),
    ∵点D向左移动2各单位长度,向下移动6个单位长度得到点E,
    ∴点E的坐标为(﹣6,﹣8);
    如图,当CD=CB时,四边形CBED为菱形,
    ∴CD2=CB2,
    ∴2m2=40,
    解得:m1=﹣2,m2=2(舍去),
    ∴点D的坐标为(﹣2,2﹣6),
    ∵点D向右移动2个单位长度,向上移动6个单位长度得到点E,
    ∴点E的坐标为(2﹣2,2);
    综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);
    ②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,
    ∵A(﹣6,0),B(2,0),
    ∴抛物线的对称轴为直线x=﹣2,
    ∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,
    ∴设直线l的解析式为y=3x+b,
    ∵点D的坐标(m,﹣m﹣6),
    ∴b=﹣4m﹣6,
    ∴M(﹣2,﹣4m﹣12),
    ∵抛物线的对称轴与直线AC交于点N.
    ∴N(﹣2,﹣4),
    ∴MN=﹣4m﹣12+4=﹣4m﹣8,
    ∵S△DMN=S△AOC,
    ∴(﹣4m﹣8)(﹣2﹣m)=×6×6,
    整理得:m2+4m﹣5=0,
    解得:m1=﹣5,m2=1(舍去),
    ∴点D的坐标为(﹣5,﹣1),
    ∴点M的坐标为(﹣2,8),
    ∴DM==3,
    答:DM的长为3.
    15.(2020•阜新)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.
    (1)求这个二次函数的表达式;
    (2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;
    ②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
    【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,
    解得,
    ∴y=x2+2x﹣3.
    (2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b′.得,
    解得,
    ∴y=﹣x﹣3,
    ∵点P(m,0)是x轴上的一动点,且PM⊥x轴.
    ∴M(m,﹣m﹣3),N(m,m2+2m﹣3),
    ∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,
    ∵a=﹣1<0,
    ∴此函数有最大值.
    又∵点P在线段OA上运动,且﹣3<﹣<0,
    ∴当m=﹣时,MN有最大值.
    ②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.
    ∵MN=﹣m2﹣3m,MC=﹣m,
    ∴﹣m2﹣3m=﹣m,
    解得m=﹣3+或0(舍弃)
    ∴MN=3﹣2,
    ∴CQ=MN=3﹣2,
    ∴OQ=3+1,
    ∴Q(0,﹣3﹣1).
    如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).
    如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,
    则有,m2+3m=﹣m,
    解得m=﹣3﹣或0(舍弃),
    ∴MN=CQ=3+2,
    ∴OQ=CQ﹣OC=3﹣1,
    ∴Q(0,3﹣1).
    当点P在y轴的右侧时,显然MN>CM,此时满足条件的菱形不存在.
    综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).

    相关试卷

    中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析):

    这是一份中考数学压轴真题汇编(全国通用)专题05二次函数中特殊平行四边形存在性问题(原卷版+解析),共63页。试卷主要包含了,与y轴相交于点C,两点,直线x=3与x轴交于点C,综合与探究等内容,欢迎下载使用。

    中考数学压轴真题汇编(全国通用)专题04二次函数中角度问题压轴真题训练(原卷版+解析):

    这是一份中考数学压轴真题汇编(全国通用)专题04二次函数中角度问题压轴真题训练(原卷版+解析),共34页。试卷主要包含了的顶点P在抛物线F,,与y轴交于点C,顶点为D,,交y轴于点C,综合与探究等内容,欢迎下载使用。

    中考数学压轴真题汇编(全国通用)专题03函数图像的压轴真题训练(原卷版+解析):

    这是一份中考数学压轴真题汇编(全国通用)专题03函数图像的压轴真题训练(原卷版+解析),共40页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map