年终活动
搜索
    上传资料 赚现金

    中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)

    立即下载
    加入资料篮
    中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)第1页
    中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)第2页
    中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)第3页
    还剩44页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析)

    展开

    这是一份中考数学第一轮专题复习真题分点透练(全国通用)第十六讲图形的相似(原卷版+解析),共47页。
    1.(2021•攀枝花)若(x、y、z均不为0),则= .
    类型二 黄金分割
    2.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
    A.平移B.旋转C.轴对称D.黄金分割
    3.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
    类型三 平行线分线段成比例
    4.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
    A.B.C.D.
    5.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
    A.4B.5C.6D.7
    6.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 .
    命题点2 相似的基本性质
    7.(2022•兰州)已知△ABC∽△DEF,=,若BC=2,则EF=( )
    A.4B.6C.8D.16
    8.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )
    A.B.C.D.
    9.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )
    A.54B.36C.27D.21
    命题点3 相似三角形的判定与性质
    类型一 A字型
    10.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
    A.B.C.D.
    11.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ,使△ADE∽△ABC.
    12.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
    A.1:B.1:2C.1:3D.1:4
    13.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
    A.9cmB.12cmC.15cmD.18cm
    14.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
    15.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
    (1)若AB=8,求线段AD的长.
    (2)若△ADE的面积为1,求平行四边形BFED的面积.
    16.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
    (1)求证:△ABC∽△AEB;
    (2)当AB=6,AC=4时,求AE的长.
    17.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
    (1)求证:PD是⊙O的切线;
    (2)求证:△ABD∽△DCP;
    (3)若AB=6,AC=8,求点O到AD的距离.
    18.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.
    求证:(1)∠CAE=∠BAF;
    (2)CF•FQ=AF•BQ.
    19.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
    (1)求证:AF是⊙O的切线;
    (2)若BC=6,sinB=,求⊙O的半径及OD的长.
    类型二 8字型
    20.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
    A.B.4C.D.6
    21.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
    A.3B.4C.5D.
    22.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 .
    23.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.
    24.(2022•无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.
    (1)求证:△CED∽△BAD;
    (2)当DC=2AD时,求CE的长.
    25.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
    (1)若BE平分∠CBD,求证:BF⊥AC;
    (2)找出图中与△OBF相似的三角形,并说明理由;
    (3)若OF=3,EF=2,求DE的长度.
    类型三 旋转型
    26.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
    A.①②B.②③C.①③D.①②③
    27.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
    ①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
    A.①③B.①②③C.②③D.①②④
    28.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .
    29.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为 ,DH的长为 .
    类型四 三垂直型
    30.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
    A.9B.12C.15D.18
    31.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
    类型五 网络中相似三角形的判定与性质
    32.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为( )
    A.1:4B.4:1C.1:2D.2:1
    命题点4 相似三角形的实际应用
    33.(2022•德州)如图,把一根长为4.5m的竹竿AB斜靠在石坝旁,量出竿长1m处离地面的高度为0.6m,则石坝的高度为( )
    A.2.7mB.3.6mC.2.8mD.2.1m
    34.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米.
    35.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO
    是 米.
    36.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.
    37.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
    第十六讲 图形的相似
    命题点1 比例线段
    类型一 比例的性质
    1.(2021•攀枝花)若(x、y、z均不为0),则= .
    【答案】3
    【解答】解:设===k(k≠0),
    则x=6k,y=4k,z=3k,
    所以,==3.
    故答案为:3.
    类型二 黄金分割
    2.(2022•山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的( )
    A.平移B.旋转C.轴对称D.黄金分割
    【答案】D.
    【解答】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,
    又黄金分割比为≈0.618,
    ∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,
    故选:D.
    3.(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为 米.
    【答案】(﹣1+)
    【解答】解:∵BE2=AE•AB,
    设BE=x,则AE=(2﹣x),
    ∵AB=2,
    ∴x2=2(2﹣x),
    即x2+2x﹣4=0,
    解得:x1=﹣1,x2=﹣1﹣(舍去),
    ∴线段BE的长为(﹣1+)米.
    故答案为:(﹣1+).
    类型三 平行线分线段成比例
    4.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
    A.B.C.D.
    【答案】C
    【解答】解:∵DE∥BC,
    ∴=,
    ∴,
    ∴,
    ∴EC=.
    故选:C.
    5.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
    A.4B.5C.6D.7
    【答案】C
    【解答】解:∵CD∥OB,
    ∴,
    ∵AC:OC=1:2,
    ∴,
    ∵C、D两点纵坐标分别为1、3,
    ∴CD=3﹣1=2,
    ∴,
    解得:OB=6,
    ∴B点的纵坐标为6,
    故选:C.
    6.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为 .
    【答案】5
    【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.
    ∵AE平分∠BAC,FM⊥AB,FN⊥AC,
    ∴FM=FN,
    ∴===3,
    ∴AB=3AD,
    设AD=DC=a,则AB=3a,
    ∵AD=DC,DT∥AE,
    ∴ET=CT,
    ∴==3,
    设ET=CT=b,则BE=3b,
    ∵AB+BE=3,
    ∴3a+3b=3,
    ∴a+b=,
    ∴△ABC的周长=AB+AC+BC=5a+5b=5,
    故答案为:5.
    命题点2 相似的基本性质
    7.(2022•兰州)已知△ABC∽△DEF,=,若BC=2,则EF=( )
    A.4B.6C.8D.16
    【答案】A
    【解答】解:∵△ABC∽△DEF,
    ∴,
    ∵=,BC=2,
    ∴,
    ∴EF=4,
    故选:A.
    8.(2022•贺州)如图,在△ABC中,DE∥BC,DE=2,BC=5,则S△ADE:S△ABC的值是( )
    A.B.C.D.
    【答案】B
    【解答】解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∵DE=2,BC=5,
    ∴S△ADE:S△ABC的值为,
    故选:B.
    9.(2022•连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形DEF,其最长边为12,则△DEF的周长是( )
    A.54B.36C.27D.21
    【答案】C
    【解答】解:方法一:设2对应的边是x,3对应的边是y,
    ∵△ABC∽△DEF,
    ∴==,
    ∴x=6,y=9,
    ∴△DEF的周长是27;
    方式二:∵△ABC∽△DEF,
    ∴=,
    ∴=,
    ∴C△DEF=27;
    故选:C.
    命题点3 相似三角形的判定与性质
    类型一 A字型
    10.(2022•雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
    A.B.C.D.
    【答案】D
    【解答】解:∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴=,
    ∵=,
    ∴=,
    ∴==.
    故选:D.
    11.(2022•邵阳)如图,在△ABC中,点D在AB边上,点E在AC边上,请添加一个条件 ,使△ADE∽△ABC.
    【答案】∠ADE=∠B或∠AED=∠C或=(答案不唯一)
    【解答】解:∵∠A=∠A,
    ∴当∠ADE=∠B或∠AED=∠C或=时,△ADE∽△ABC,
    故答案为:∠ADE=∠B或∠AED=∠C或=(答案不唯一).
    12.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
    A.1:B.1:2C.1:3D.1:4
    【答案】B
    【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,
    ∴△ACD∽△ABC,
    ∴==,
    故选:B.
    13.(2022•凉山州)如图,在△ABC中,点D、E分别在边AB、AC上,若DE∥BC,,DE=6cm,则BC的长为( )
    A.9cmB.12cmC.15cmD.18cm
    【答案】C
    【解答】解:∵=,
    ∴=,
    ∵DE∥BC,
    ∴∠ADE=∠B,∠AED=∠C,
    ∴△ADE∽△ABC,
    ∴=,
    ∴=,
    ∴BC=15(cm),
    故选:C
    14.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .
    【答案】
    【解答】解:设AD交EH于点R,
    ∵矩形EFGH的边FG在BC上,
    ∴EH∥BC,∠EFC=90°,
    ∴△AEH∽△ABC,
    ∵AD⊥BC于点D,
    ∴∠ARE=∠ADB=90°,
    ∴AR⊥EH,
    ∴=,
    ∵EF⊥BC,RD⊥BC,EH=2EF,
    ∴RD=EF=EH,
    ∵BC=8,AD=6,AR=6﹣EH,
    ∴=,
    解得EH=,
    ∴EH的长为,
    故答案为:.
    15.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
    (1)若AB=8,求线段AD的长.
    (2)若△ADE的面积为1,求平行四边形BFED的面积.
    【解答】解:(1)∵四边形BFED是平行四边形,
    ∴DE∥BF,
    ∴DE∥BC,
    ∴△ADE∽△ABC,
    ∴==,
    ∵AB=8,
    ∴AD=2;
    (2)∵△ADE∽△ABC,
    ∴=()2=()2=,
    ∵△ADE的面积为1,
    ∴△ABC的面积是16,
    ∵四边形BFED是平行四边形,
    ∴EF∥AB,
    ∴△EFC∽△ABC,
    ∴=()2=,
    ∴△EFC的面积=9,
    ∴平行四边形BFED的面积=16﹣9﹣1=6.
    16.(2022•江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.
    (1)求证:△ABC∽△AEB;
    (2)当AB=6,AC=4时,求AE的长.
    【解答】(1)证明:∵四边形ABCD为菱形,
    ∴∠ACD=∠BCA,
    ∵∠ACD=∠ABE,
    ∴∠BCA=∠ABE,
    ∵∠BAC=∠EAB,
    ∴△ABC∽△AEB;
    (2)解:∵△ABC∽△AEB,
    ∴=,
    ∵AB=6,AC=4,
    ∴=,
    ∴AE==9.
    17.(2022•遂宁)如图⊙O是△ABC的外接圆,点O在BC上,∠BAC的角平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.
    (1)求证:PD是⊙O的切线;
    (2)求证:△ABD∽△DCP;
    (3)若AB=6,AC=8,求点O到AD的距离.
    【解答】(1)证明:如图1,连接OD.
    ∵AD平分∠BAC,
    ∴∠BAD=∠CAD,
    ∴=,
    ∴∠BOD=∠COD=90°,
    ∵BC∥PD,
    ∴∠ODP=∠BOD=90°,
    ∴OD⊥PD,
    ∵OD是半径,
    ∴PD是⊙O的切线.
    (2)证明:∵BC∥PD,
    ∴∠PDC=∠BCD.
    ∵∠BCD=∠BAD,
    ∴∠BAD=∠PDC,
    ∵∠ABD+∠ACD=180°,∠ACD+∠PCD=180°,
    ∴∠ABD=∠PCD,
    ∴△ABD∽△DCP;
    (3)解法一:如图,过点O作OE⊥AD于E,连接OD,
    ∵BC是⊙O的直径,
    ∴∠BAC=∠BDC=90°,
    ∵AB=6,AC=8,
    ∴BC==10,
    ∵BD=CD,
    ∴BD=CD=5,
    由(2)知:△ABD∽△DCP,
    ∴=,即=,
    ∴CP=,
    ∴AP=AC+CP=8+=,
    ∵∠ADB=∠ACB=∠P,∠BAD=∠DAP,
    ∴△BAD∽△DAP,
    ∴=,即=,
    ∴AD2=6×=98,
    ∴AD=7,
    ∵OE⊥AD,
    ∴DE=AD=,
    ∴OE===,
    即点O到AD的距离是.
    解法二:如图,过点D作DM⊥AB于M,DN⊥AC于N,过点O作OE⊥AD于E,连接OD,则∠M=∠CND=90°,
    ∵AD平分∠BAC,∠BAC=90°,
    ∴DM=DN,∠DAM=∠CAD=45°,
    ∵A,B,D,C四点共圆,
    ∴∠DBM=∠DCN,
    ∴△DCN≌△DBM(AAS),
    ∴CN=BM,
    同理得:AM=AN,
    ∵AB=6,AC=8,
    ∴AM=DM=7,
    ∴AD=7,
    由解法一可得:OE=.
    即点O到AD的距离是.
    18.(2022•上海)如图所示,在等腰三角形ABC中,AB=AC,点E,F在线段BC上,点Q在线段AB上,且CF=BE,AE2=AQ•AB.
    求证:(1)∠CAE=∠BAF;
    (2)CF•FQ=AF•BQ.
    【解答】证明:(1)∵AB=AC,
    ∴∠B=∠C,
    ∵CF=BE,
    ∴CF﹣EF=BE﹣EF,
    即CE=BF,
    在△ACE和△ABF中,

    ∴△ACE≌△ABF(SAS),
    ∴∠CAE=∠BAF;
    (2)∵△ACE≌△ABF,
    ∴AE=AF,∠CAE=∠BAF,
    ∵AE2=AQ•AB,AC=AB,
    ∴=,
    ∴△ACE∽△AFQ,
    ∴∠AEC=∠AQF,
    ∴∠AEF=∠BQF,
    ∵AE=AF,
    ∴∠AEF=∠AFE,
    ∴∠BQF=∠AFE,
    ∵∠B=∠C,
    ∴△CAF∽△BFQ,
    ∴=,
    即CF•FQ=AF•BQ.
    19.(2022•贵港)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠FAC=∠BDC.
    (1)求证:AF是⊙O的切线;
    (2)若BC=6,sinB=,求⊙O的半径及OD的长.
    【解答】(1)证明:如图,作OH⊥FA,垂足为H,连接OE,
    ∵∠ACB=90°,D是AB的中点,
    ∴CD=AD=,
    ∴∠CAD=∠ACD,
    ∵∠BDC=∠CAD+∠ACD=2∠CAD,
    又∵∠FAC=,
    ∴∠FAC=∠CAB,
    即AC是∠FAB的平分线,
    ∵点O在AC上,⊙O与AB相切于点E,
    ∴OE⊥AB,且OE是⊙O的半径,
    ∴OH=OE,OH是⊙O的半径,
    ∴AF是⊙O的切线;
    (2)解:如图,在△ABC中,∠ACB=90°,BC=6,sinB=,
    ∴可设AC=4x,AB=5x,
    ∴(5x)2﹣(4x)2=62,
    ∴x=2,
    则AC=8,AB=10,
    设⊙O的半径为r,则OC=OE=r,
    ∵Rt△AOE∽Rt△ABC,
    ∴,
    即,
    ∴r=3,
    ∴AE=4,
    又∵AD=5,
    ∴DE=1,
    在Rt△ODE中,由勾股定理得:OD=.
    类型二 8字型
    20.(2022•哈尔滨)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为( )
    A.B.4C.D.6
    【答案】C
    【解答】解:∵AB∥CD,
    ∴△ABE∽△CDE,
    ∴=,即=,
    ∴BE=1.5,
    ∴BD=BE+DE=4.5.
    故选:C.
    21.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
    A.3B.4C.5D.
    【答案】B
    【解答】解:过点D作DH⊥AB于点H,如图,
    ∵四边形ABCD是菱形,
    ∴AD=AB=CD,AB∥CD.
    ∵EF⊥AB,DH⊥AB,
    ∴DH∥EF,
    ∴四边形DHFE为平行四边形,
    ∴HF=DE,DH=EF=.
    ∵点E是边CD的中点,
    ∴DE=CD,
    ∴HF=CD=AB.
    ∵BF:CE=1:2,
    ∴设BF=x,则CE=2x,
    ∴CD=4x,DE=HF=2x,
    AD=AB=4x,
    ∴AF=AB+BF=5x.
    ∴AH=AF﹣HF=3x.
    在Rt△ADH中,
    ∵DH2+AH2=AD2,
    ∴.
    解得:x=±1(负数不合题意,舍去),
    ∴x=1.
    ∴AB=4x=4.
    即菱形ABCD的边长是4,
    故选:B.
    22.(2022•鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为 .
    【答案】5
    【解答】解:∵AB∥CD,
    ∴∠B=∠C,∠A=∠D,
    ∴△EAB∽△EDC,
    ∴AB:CD=AE:DE=1:2,
    又∵AB=2.5,
    ∴CD=5.
    故答案为:5.
    23.(2022•菏泽)如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.
    【解答】证明:∵BE=BC,
    ∴∠C=∠CEB,
    ∵∠CEB=∠AED,
    ∴∠C=∠AED,
    ∵AD⊥BE,
    ∴∠D=∠ABC=90°,
    ∴△ADE∽△ABC.
    24.(2022•无锡)如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.
    (1)求证:△CED∽△BAD;
    (2)当DC=2AD时,求CE的长.
    【解答】(1)证明:如图1,
    ∵∠CDE=∠BDA,∠A=∠E,
    ∴△CED∽△BAD;
    (2)解:如图2,过点D作DF⊥EC于点F,
    ∵△ABC是边长为6等边三角形,
    ∴∠A=60°,AC=AB=6,
    ∵DC=2AD,
    ∴AD=2,DC=4,
    ∵△CED∽△BAD,
    ∴,
    ∴EC=3DE,
    ∵∠E=∠A=60°,DF⊥EC,
    ∴∠EDF=90°﹣60°=30°,
    ∴DE=2EF,
    设EF=x,则DE=2x,DF=x,EC=6x,
    ∴FC=5x,
    在Rt△DFC中,DF2+FC2=DC2,
    ∴(x)2+(5x)2=42,
    解得:x=或﹣(不符合题意,舍去),
    ∴EC=6x=.
    25.(2022•泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.
    (1)若BE平分∠CBD,求证:BF⊥AC;
    (2)找出图中与△OBF相似的三角形,并说明理由;
    (3)若OF=3,EF=2,求DE的长度.
    【解答】(1)证明:如图,
    在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,
    ∴∠2=∠3=∠4,∠3+∠5=90°,
    ∵DE=BE,
    ∴∠1=∠2,
    又∵BE平分∠DBC,
    ∴∠1=∠6,
    ∴∠3=∠6,
    ∴∠6+∠5=90°,
    ∴BF⊥AC;
    (2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:
    ∵∠1=∠3,∠EFC=∠BFO,
    ∴△ECF∽△OBF,
    ∵DE=BE,
    ∴∠1=∠2,
    又∵∠2=∠4,
    ∴∠1=∠4,
    又∵∠BFA=∠OFB,
    ∴△BAF∽△OBF;
    (3)解:在矩形ABCD中,∠4=∠3=∠2,
    ∵∠1=∠2,∴∠1=∠4.
    又∵∠OFB=∠BFA,
    ∴△OBF∽△BFA.
    ∵∠1=∠3,∠OFB=∠EFC,
    ∴△OBF∽△ECF.
    ∴,
    ∴,即3CF=2BF,
    ∴3(CF+OF)=3CF+9=2BF+9,
    ∴3OC=2BF+9
    ∴3OA=2BF+9①,
    ∵△ABF∽△BOF,
    ∴,
    ∴BF2=OF•AF,
    ∴BF2=3(OA+3)②,
    联立①②,可得BF=1±(负值舍去),
    ∴DE=BE=2+1+=3+.
    类型三 旋转型
    26.(2022•扬州)如图,在△ABC中,AB<AC,将△ABC以点A为中心逆时针旋转得到△ADE,点D在BC边上,DE交AC于点F.下列结论:①△AFE∽△DFC;②DA平分∠BDE;③∠CDF=∠BAD,其中所有正确结论的序号是( )
    A.①②B.②③C.①③D.①②③
    【答案】D
    【解答】解:∵将△ABC以点A为中心逆时针旋转得到△ADE,
    ∴∠BAC=∠DAE,∠B=∠ADE,AB=AD,∠E=∠C,
    ∴∠B=∠ADB,
    ∴∠ADE=∠ADB,
    ∴DA平分∠BDE,
    ∴②符合题意;
    ∵∠AFE=∠DFC,∠E=∠C,
    ∴△AFE∽△DFC,
    ∴①符合题意;
    ∵∠BAC=∠DAE,
    ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
    ∴∠BAD=∠FAE,
    ∵△AFE∽△DFC,
    ∴∠FAE=∠CDF,
    ∴∠BAD=∠CDF,
    ∴③符合题意;
    故选:D.
    27.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是( )
    ①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;
    A.①③B.①②③C.②③D.①②④
    【答案】D
    【解答】解:∵四边形ABCD、四边形BEFG是正方形,
    ∴AB=BC,BG=BE,∠ABC=90°=∠GBE,
    ∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,
    ∴△ABG≌△CBE(SAS),
    ∴∠BAG=∠BCE,
    ∵∠BAG+∠APB=90°,
    ∴∠BCE+∠APB=90°,
    ∴∠BCE+∠OPC=90°,
    ∴∠POC=90°,
    ∴EC⊥AG,故①正确;
    取AC的中点K,如图:
    在Rt△AOC中,K为斜边AC上的中点,
    ∴AK=CK=OK,
    在Rt△ABC中,K为斜边AC上的中点,
    ∴AK=CK=BK,
    ∴AK=CK=OK=BK,
    ∴A、B、O、C四点共圆,
    ∴∠BOA=∠BCA,
    ∵∠BPO=∠CPA,
    ∴△OBP∽△CAP,故②正确,
    ∵∠AOC=∠ADC=90°,
    ∴∠AOC+∠ADC=180°,
    ∴A、O、C、D四点共圆,
    ∵AD=CD,
    ∴∠AOD=∠DOC=45°,故④正确,
    由已知不能证明OB平分∠CBG,故③错误,
    故正确的有:①②④,
    故选:D.
    28.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是 .
    【答案】②③
    【解答】解:①∵△ABC是等腰直角三角形,
    ∴∠B=∠ACB=45°,
    ∵∠ADC=∠B+∠BAD,
    而∠BAD的度数不确定,
    ∴∠ADC与∠CAD不一定相等,
    ∴AC与CD不一定相等,
    故①错误;
    ②∵∠BAC=∠DAE=90°,
    ∴∠BAD=∠CAE,
    ∵∠B=∠AED=45°,
    ∴△AEF∽△ABD,
    ∴=,
    ∵AE=AD,AB=BC,
    ∴AD2=AF•AB=AF•BC,
    ∴AD2=AF•BC,
    故②正确;
    ④∵∠DAH=∠B=45°,∠AHD=∠AHD,
    ∴△ADH∽△BAH,
    ∴=,
    ∴AH2=DH•BH,
    而BH与AC不一定相等,
    故④不一定正确;
    ③∵△ADE是等腰直角三角形,
    ∴∠ADG=45°,
    ∵AH⊥DE,
    ∴∠AGD=90°,
    ∵AD=3,
    ∴AG=DG=,
    ∵DH=5,
    ∴GH===,
    ∴AH=AG+GH=2,
    由④知:AH2=DH•BH,
    ∴(2)2=5BH,
    ∴BH=8,
    ∴BD=BH﹣DH=8﹣5=3,
    故③正确;
    本题正确的结论有:②③
    故答案为:②③.
    29.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为 ,DH的长为 .
    【答案】90°,
    【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.
    ∵∠EAF=∠BAD=90°,
    ∴∠DAF=∠BAE,
    ∵==,
    ∴=,
    ∴△DAF∽△BAE,
    ∴∠ADF=∠ABE,
    ∵∠DOH=∠AOB,
    ∴∠DHO=∠BAO=90°,
    ∴∠BHD=90°,
    ∵AF=3,AE=4,∠EAF=90°,
    ∴EF==5,
    ∵EF⊥AD,
    ∴•AE•AF=•EF•AJ,
    ∴AJ=,
    ∴EJ===,
    ∵EJ∥AB,
    ∴=,
    ∴=,
    ∴OJ=,
    ∴OA=AJ+OJ=+=4,
    ∴OB===4,OD=AD﹣AO=6﹣4=2,
    ∵cs∠ODH=cs∠ABO,
    ∴=,
    ∴=,
    ∴DH=.
    故答案为:90°,
    类型四 三垂直型
    30.(2022•达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为( )
    A.9B.12C.15D.18
    【答案】C
    【解答】解:∵四边形ABCD是矩形,
    ∴AD=BC,∠A=∠EBF=∠BCD=90°,
    ∵将矩形ABCD沿直线DE折叠,
    ∴AD=DF=BC,∠A=∠DFE=90°,
    ∴∠BFE+∠DFC=∠BFE+∠BEF=90°,
    ∴∠BEF=∠CFD,
    ∴△BEF∽△CFD,
    ∴,
    ∵CD=3BF,
    ∴CF=3BE=12,
    设BF=x,则CD=3x,DF=BC=x+12,
    ∵∠C=90°,
    ∴Rt△CDF中,CD2+CF2=DF2,
    ∴(3x)2+122=(x+12)2,
    解得x=3(舍去0根),
    ∴AD=DF=3+12=15,
    故选:C.
    31.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为 .
    【答案】
    【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:
    设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),
    ∵E为OD中点,
    ∴E(﹣,),
    设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:

    解得,
    ∴直线CE解析式为y=x+,
    在y=x+中,令x=﹣1得y=,
    ∴G(﹣1,),
    ∴GE==,
    ∵将线段CE绕点C逆时针旋转90°得到CF,
    ∴CE=CF,∠ECF=90°,
    ∴∠MCE=90°﹣∠NCF=∠NFC,
    ∵∠EMC=∠CNF=90°,
    ∴△EMC≌△CNF(AAS),
    ∴ME=CN,CM=NF,
    ∵E(﹣,),C(1,1),
    ∴ME=CN=,CM=NF=,
    ∴F(,﹣),
    ∵H是EF中点,
    ∴H(,0),
    ∴OH=,
    ∴==.
    故答案为:.
    类型五 网络中相似三角形的判定与性质
    32.(2022•包头)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,AC与BD相交于点E,连接AB,CD,则△ABE与△CDE的周长比为( )
    A.1:4B.4:1C.1:2D.2:1
    【答案】D
    【解答】解:如图所示,
    由网格图可知:BF=2,AF=4,CH=2,DH=1,
    ∴AB==2,
    CD==.
    ∵FA∥CG,
    ∴∠FAC=∠ACG.
    在Rt△ABF中,
    tan∠BAF=,
    在Rt△CDH中,
    tan∠HCD=,
    ∴tan∠BAF=tan∠HCD,
    ∴∠BAF=∠HCD,
    ∵∠BAC=∠BAF+∠CAF,∠ACD=∠DCH+∠GCA,
    ∴∠BAC=∠DCA,
    ∴AB∥CD,
    ∴△ABE∽△CDE,
    ∴△ABE与△CDE的周长比===2:1.
    故选:D
    命题点4 相似三角形的实际应用
    33.(2022•德州)如图,把一根长为4.5m的竹竿AB斜靠在石坝旁,量出竿长1m处离地面的高度为0.6m,则石坝的高度为( )
    A.2.7mB.3.6mC.2.8mD.2.1m
    【答案】A
    【解答】解:过点B作BF⊥AD于点F,
    ∵DC⊥AD,BF⊥AD,
    ∴DC∥BF,
    ∴△ACD∽△ABF,
    ∴=,
    ∴=,
    解得:BF=2.7.
    故选:A.
    34.(2022•百色)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为 米.
    【答案】12
    【解答】解:设旗杆的高度为x米,
    根据题意得:=,
    解得x=12,
    ∴旗杆的高度为12米,
    故答案为:12.
    35.(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 米.
    【答案】134
    【解答】解:据相同时刻的物高与影长成比例,
    设金字塔的高度BO为x米,则可列比例为,,
    解得:x=134,
    经检验,x=134是原方程的解,
    ∴BO=134.
    故答案为:134.
    36.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= m.
    【答案】9.88
    【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.
    ∴AC∥DF,
    ∴∠ACB=∠DFE,
    ∵AB⊥BC,DE⊥EF,
    ∴∠ABC=∠DEF=90°,
    ∴Rt△ABC∽△Rt△DEF,
    ∴,即,
    解得AB=9.88,
    ∴旗杆的高度为9.88m.
    故答案为:9.88.
    37.(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.
    【解答】解:解法一:∵AD∥EG,
    ∴∠ADO=∠EGF,
    ∵∠AOD=∠EFG=90°,
    ∴△AOD∽△EFG,
    ∴=,即=,
    ∴AO=15,
    ∵AD∥BC,
    ∴△BOC∽△AOD,
    ∴=,即=,
    ∴BO=12,
    ∴AB=AO﹣BO=15﹣12=3(米);
    解法二:如图,过点C作CM⊥OD于C,交AD于M,
    ∵△EGF∽△MDC,
    ∴=,即=,
    ∴CM=3,
    即AB=CM=3(米),
    答:旗杆的高AB是3米.

    相关试卷

    第三讲 分式及其运算-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第三讲 分式及其运算-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第三讲分式及其运算解析版docx、第三讲分式及其运算原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。

    第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用):

    这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map