所属成套资源:最新备战中考数学第一轮复习分点透练真题(全国通用)
第十九讲 矩形、菱形、正方形-最新备战中考数学第一轮复习分点透练真题(全国通用)
展开
这是一份第十九讲 矩形、菱形、正方形-最新备战中考数学第一轮复习分点透练真题(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
第十九讲 矩形、菱形、正方形命题点1 矩形的相关证明与计算1.(2020•怀化)在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为( )A.4 B.6 C.8 D.102.(2021•遂宁)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C恰好落在AB边上的F处,则CE的长是( )A.1 B. C. D.3.(2021•黑龙江)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,在不添加任何辅助线的情况下,请你添加一个条件 ,使平行四边形ABCD是矩形. 4.(2021•贵港)如图,在矩形ABCD中,BD是对角线,AE⊥BD,垂足为E,连接CE,若tan∠ADB=,则tan∠DEC的值是 .5.(2021•十堰)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为 .6.(2021•嘉峪关)如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE= cm.7.(2021•绍兴)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若AB=30cm,则BC长为 cm(结果保留根号).8.(2021•内江)如图,矩形ABCD中,AB=6,BC=8,对角线BD的垂直平分线EF交AD于点E、交BC于点F,则线段EF的长为 . 第8题图 第9题图9.(2021•枣庄)如图,∠BOD=45°,BO=DO,点A在OB上,四边形ABCD是矩形,连接AC,BD交于点E,连接OE交AD于点F.下列4个判断:①OE⊥BD;②∠ADB=30°;③DF=AF;④若点G是线段OF的中点,则△AEG为等腰直角三角形,其中,判断正确的是 .(填序号)10.(2021•贵阳)如图,在矩形ABCD中,点M在DC上,AM=AB,且BN⊥AM,垂足为N.(1)求证:△ABN≌△MAD;(2)若AD=2,AN=4,求四边形BCMN的面积. 11.(2021•金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值. 命题点2 菱形的相关证明与计算12.(2021•河南)关于菱形的性质,以下说法不正确的是( )A.四条边相等 B.对角线相等 C.对角线互相垂直 D.是轴对称图形13.(2021•烟台)如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为( )A.(2,2) B.(,2) C.(3,) D.(2,)14.(2021•陕西)如图,在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为( )A. B. C. D.15.(2021•绍兴)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC﹣CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是( )A.直角三角形→等边三角形→等腰三角形→直角三角形 B.直角三角形→等腰三角形→直角三角形→等边三角形 C.直角三角形→等边三角形→直角三角形→等腰三角形 D.等腰三角形→等边三角形→直角三角形→等腰三角形16.(2021•安徽)如图,在菱形ABCD中,AB=2,∠A=120°,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )A.3+ B.2+2 C.2+ D.1+2 17.(2021•朝阳)如图,在菱形ABCD中,点E,F分别在AB,CD上,且BE=2AE,DF=2CF,点G,H分别是AC的三等分点,则的值为( )A. B. C. D.18.(2021•南充)如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,AE=BF=2,△DEF的周长为3,则AD的长为( )A. B.2 C.+1 D.2﹣119.(2021•北京)如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是 (写出一个即可).20.(2021•山西)如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=8,AC=6,OE∥AB,交BC于点E,则OE的长为 . 21.(2021•盐城)如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件 后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC这三个条件中选择1个条件填空(写序号),并加以证明.22.(2021•云南)如图,四边形ABCD是矩形,E、F分别是线段AD、BC上的点,点O是EF与BD的交点.若将△BED沿直线BD折叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB•AD=3,求EF•BD的值.命题点3 正方形的相关证明与计算23.(2021•玉林)一个四边形顺次添加下列条件中的三个条件便得到正方形:a.两组对边分别相等b.一组对边平行且相等c.一组邻边相等d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是( )A.仅① B.仅③ C.①② D.②③ 24.(2019•毕节市)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为( )A. B.3 C. D.525.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1 B. C.2 D.226.(2021•湖北)如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个 27.(2021•黔东南州)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60°,使点B落在点B′的位置,连接BB′,过点D作DE⊥BB′,交BB′的延长线于点E,则B′E的长为( )A. B. C. D.28.(2021•常德)如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是( )A.BE=AE B.PC=PD C.∠EAF+∠AFD=90° D.PE=EC29.(2021春•新吴区月考)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为( )A.(﹣2,3) B.(﹣3,5) C.(5,﹣2) D.(﹣1,5) 30.(2020•陕西)如图,在矩形ABCD中,AB=4,BC=8,延长BA至E,使AE=AB,以AE为边向右侧作正方形AEFG,O为正方形AEFG的中心,若过点O的一条直线平分该组合图形的面积,并分别交EF、BC于点M、N,则线段MN的长为 .31.(2021•湖州)由沈康身教授所著,数学家吴文俊作序的《数学的魅力》一书中记载了这样一个故事:如图,三姐妹为了平分一块边长为1的祖传正方形地毯,先将地毯分割成七块,再拼成三个小正方形(阴影部分).则图中AB的长应是 .32.(2021•东营)如图,正方形纸片ABCD的边长为12,点F是AD上一点,将△CDF沿CF折叠,点D落在点G处,连接DG并延长交AB于点E.若AE=5,则GE的长为 .33.(2021•天津)如图,正方形ABCD的边长为4,对角线AC,BD相交于点O,点E,F分别在BC,CD的延长线上,且CE=2,DF=1,G为EF的中点,连接OE,交CD于点H,连接GH,则GH的长为 . 34.(2021•邵阳)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F是对角线AC上的两点,且AE=CF.连接DE,DF,BE,BF.(1)证明:△ADE≌△CBF.(2)若AB=4,AE=2,求四边形BEDF的周长.
相关试卷
这是一份第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份第十九讲 矩形、菱形、正方形-备战2023年中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份第十九讲 矩形、菱形、正方形-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十九讲矩形菱形正方形解析版docx、第十九讲矩形菱形正方形原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

