所属成套资源:2024年新高一数学暑假衔接知识回顾与新课预习(人教A版2019)
专题21 函数的应用(一)-2024年新高一(初升高)数学暑期衔接讲义
展开
这是一份专题21 函数的应用(一)-2024年新高一(初升高)数学暑期衔接讲义,文件包含专题21函数的应用一教师版-2024年新高一初升高数学暑期衔接讲义docx、专题21函数的应用一学生版-2024年新高一初升高数学暑期衔接讲义docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
知识点一 用函数模型解决实际问题的一般步骤
(1)审题:弄清题意,分清条件和结论,理顺数量关系,用函数刻画实际问题,初步选择模型.
(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.
(3)求模:求解数学模型,得到数学结论.
(4)还原:利用数学知识和方法得出的结论还原到实际问题中.
可将这些步骤用框图表示如下:
知识点二 常见的函数模型
(1)一次函数模型:即直线模型,其特点是随着自变量的增大,函数值匀速增大或减小.现实生活中很多事例可以用该模型来表示,例如:匀速直线运动的时间和位移的关系,弹簧的伸长量与拉力的关系等.
(2)二次函数模型:二次函数为生活中最常见的一种数学模型,因二次函数可求其最大值(或最小值),故最优、最省等问题常常是二次函数的模型.
(3)分段函数模型:由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题,或者在某一特定条件下的实际问题中具有广泛的应用.
【题型归纳目录】
题型一:分式型函数模型的应用
题型二:二次函数模型的应用
题型三:分段函数模型的应用
题型四:函数图象与实际问题的交汇
【典例例题】
题型一:分式型函数模型的应用
例1.(2023·广东深圳·高一深圳外国语学校校考期中)生命在于运动,运动在于锻炼.其中,游泳就是一个非常好的锻炼方式.游泳有众多好处,强身健体、保障生命安全、增强心肺功能、锻炼意志、培养勇敢顽强精神、休闲娱乐.近几年,游泳池成了新小区建设的标配家门口的“游泳池”,成了市民休闲娱乐的好去处,如图,某小区规划一个深度为,底面积为的矩形游泳池,按规划要求:在游泳池的四周安排宽的休闲区,休闲区造价为元/,游泳池的底面与墙面铺设瓷砖,瓷砖造价为元/.其他设施等支出约为1万元,设游泳池的长为.
(1)试将总造价(元)表示为长度(m)的函数;
(2)当取何值时,总造价最低,并求出最低总造价.
例2.(2023·高一课时练习)“垃圾分一分,环境美十分”.某校为积极响应有关垃圾分类的号召,从百货商场购进了A,B两种品牌的垃圾桶作为可回收垃圾桶和其他垃圾桶.已知B品牌垃圾桶比A品牌垃圾桶每个贵50元,用4000元购买A品牌垃圾桶的数量是用3000元购买B品牌垃圾桶数量的2倍.
(1)求购买一个A品牌、一个B品牌的垃圾桶各需多少元?
(2)若该中学决定再次准备用不超过6000元购进A,B两种品牌垃圾桶共50个,恰逢百货商场对两种品牌垃圾桶的售价进行调整:A品牌按第一次购买时售价的九折出售,B品牌比第一次购买时售价提高了20%,那么该学校此次最多可购买多少个B品牌垃圾桶?
例3.(2023·江苏盐城·高一盐城市伍佑中学校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计1200元.设隔离室的左右两侧面的底边长度均为x米.
(1)记y为甲工程队整体报价,求的解析式;
(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为元,问是否存在实数t,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.
题型二:二次函数模型的应用
例4.(2023·高一课时练习)某家庭进行理财投资,根据长期收益率市场预测,投资债券类产品的年收益f(x)(单位:万元)与投资额x(单位:万元)成正比,其关系如图1;投资股票类产品的年收益g(x)(单位:万元)与投资额x(单位:万元)的算术平方根成正比,其关系如图2.
(1)分别写出两种产品的年收益f(x)和g(x)的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?
例5.(2023·高一课时练习)小明同学想知道自家煤气灶旋钮放到什么位置时,烧开一壶水最省燃气,于是通过实验统计了旋钮的转角为、、、、时,烧开一壶水所耗燃气情况:
请选择合适的函数模拟拟合以上数据,由此计算:旋钮的转角为多少度时,烧开一壶水所耗然气最少?最少燃气为多少立方米?
例6.(2023·江苏·高一专题练习)鱼卷是泉州十大名小吃之一,不但本地人喜欢,而且深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户当地的习俗是农历正月不生产鱼卷,客户正月所需要的鱼卷都会在上一年农历十二月底进行一次性采购,小张把去年年底采购鱼卷的数量x(单位:箱)在的客户称为“熟客”,并把他们去年采购的数量制成下表:
(1)根据表中的数据作出频率分布直方图,并估计采购数在168箱以上(含168箱)的“熟客”人数;
(2)若去年年底“熟客”们采购的鱼卷数量占小张去年年底总的销售量的,估算小张去年年底总的销售量(同一组中的数据用该组区间的中点值为代表);
(3)由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若不在网上出售鱼卷,则按去年的价格出售,每箱利润为20元,预计销售量与去年持平;若在网上出售鱼卷,则需把每箱售价下调2至5元,且每下调m元()销售量可增加1000m箱,求小张今年年底收入Y(单位:元)的最大值.
变式1.(2023·高一单元测试)甲、乙两城相距100km,在两城之间距甲城xkm处的丙地建一核电站给甲、乙两城供电,为保证城市安全,核电站距两地的距离不少于10km.已知各城供电费用(元)与供电距离(km)的平方和供电量(亿千瓦时)之积都成正比,比例系数均是=0.25,若甲城供电量为20亿千瓦时/月,乙城供电量为10亿千瓦时/月,
(1)把月供电总费用y(元)表示成x(km)的函数,并求其定义域;
(2)求核电站建在距甲城多远处,才能使月供电总费用最小.
变式2.(2023·高一课时练习)某工厂去年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了估测以后每个月的产量,以这三个月的产量数据为依据,用一个函数模拟产品的月产量与月份数的关系,模拟函数可以选择二次函数或函数(其中为常数).已知4月份该产品产量为1.37万件,请问用以上哪个函数作为模拟函数更好,并说明理由.
题型三:分段函数模型的应用
例7.(2023·高一课时练习)某厂生产某种零件,每个零件的成本为4元,出厂单价6元,该厂为鼓励销售商订购,决定当一次订购超过100个时,每多订购一个,零件的出厂单价就降低0.01元,但实际出厂价不低于5元.
(1)当一次订购量为多少时,零件的实际出厂单价降为5元?
(2)设一次订购量为x个,零件的实际出厂单价为元,求函数的表达式;
(3)销售商一次订购150个零件时,该厂获得的利润是多少元?若订购500个呢?
例8.(2023·高一平湖市当湖高级中学校联考期中)在中国很多乡村,燃放烟花爆竹仍然是庆祝新年来临的一种方式,烟花爆竹带来的空气污染非常严重,可喷洒一定量的去污剂进行处理.据测算,每喷洒一个单位的去污剂,空气中释放的去污剂浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和,由试验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(1)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(2)若第一次喷洒2个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的3天能够持续有效去污,求的最小值.
例9.(2023·云南昆明·高一统考期末)目前,我国汽车工业迎来了巨大的革命时代,确保汽车产业可持续发展,国内汽车市场正由传统燃油车向新能源、智能网联汽车升级转型.某汽车企业决定生产一种智能网联新型汽车,生产这种新型汽车的月成本为400(万元),每生产x台这种汽车,另需投入成本(万元),当月产量不足40台时,(万元);当月产量不小于40台时,(万元).若每台汽车售价为20(万元),且该车型供不应求.
(1)求月利润y(万元)关于月产量x(台)的函数关系式;
(2)月产量为多少台时,该企业能获得最大月利润?并求出最大月利润.
变式3.(2023·福建福州·高一福建省福州第一中学校考期末)某地某路无人驾驶公交车发车时间间隔(单位:分钟)满足,,经测算.该路无人驾驶公交车载客量与发车时间间隔满足:,其中.
(1)求,并说明的实际意义:
(2)若该路公交车每分钟的净收益(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.
题型四:函数图象与实际问题的交汇
例10.(2023·北京昌平·高一统考期末)某校航模小组进行无人机飞行测试,从某时刻开始15分钟内的速度(单位:米/分钟)与飞行时间(单位:分钟)的关系如图所示.若定义“速度差函数”(单位:米/分钟)为无人机在这个时间段内的最大速度与最小速度的差,则的图像为( )
A.B.
C.D.
例11.(2023·高一单元测试)列车从地出发直达外的地,途中要经过离地的地,假设列车匀速前进,后从地到达地,则列车与地距离(单位:与行驶时间(单位:)的函数图象为( )
A.B.
C.D.
例12.(2023·全国·高一专题练习)点P从O点出发,按逆时针方向沿周长为l的图形运动一周,O、P两点的距离y与点P所走路程x的函数关系如图所示,那么点P所走的图形是( )
A.B.
C.D.
变式4.(2023·全国·高一专题练习)小明去上学,先步行,后跑步,如果y表示小明离学校的距离,x表示出发后的时间,那么下列图象中符合小明走法的是( )
A.B. C. D.
变式5.(2023·云南红河·高一校考阶段练习)如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,则的函数图象是( ).
A.B.C.D.
【过关测试】
一、单选题
1.(2023·全国·高一专题练习)某企业一个月生产某种商品万件时的生产成本为(万元),每件商品售价为元,假设每月所生产的产品能全部售完.当月所获得的总利润用(万元)表示,用表示当月生产商品的单件平均利润,则下列说法正确的是( )
A.当生产万件时,当月能获得最大总利润万元
B.当生产万件时,当月能获得最大总利润万元
C.当生产万件时,当月能获得单件平均利润最大为元
D.当生产万件时,当月能获得单件平均利润最大为元
2.(2023·四川资阳·高一四川省安岳实验中学校考期末)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位元(试剂的总产量为单位,),则要使生产每单位试剂的成本最低,试剂总产量应为( )
A.60单位B.70单位C.80单位D.90单位
3.(2023·广东广州·高一广州大学附属中学校联考期末)为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:
若某户居民本月交纳的水费为54元,则此户居民的用水量为( )
A.B.C.D.
4.(2023·河南周口·高一统考期末)某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为.其中代表拟录用人数,代表面试人数.若面试人数为60,则该公司拟录用人数为
A.15B.25C.40D.130
5.(2023·北京·高一校考阶段练习)某产品的总成本y万元与产量x(台)之间的关系是, ,若每台产品的售价为9万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )
A.3台B.5台C.6台D.10台
6.(2023·高一课时练习)把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )
A.B.C.D.
7.(2023·高一课时练习)某市为打击出租车无证运营、漫天要价等不良风气,出台两套出租车计价方案,方案一:2公里以内收费8元(起步价),超过2公里的部分每公里收费3元,不足1公里按1公里计算:方案二:3公里以内收费12元(起步价),超过3公里不超过10公里的部分每公里收费2.5元,超过10公里的部分每公里收费3.5元,不足1公里按1公里计算.以下说法正确的是( )
A.方案二比方案一更优惠
B.乘客甲打车行驶4公里,他应该选择方案二
C.乘客乙打车行驶12公里,他应该选择方案二
D.乘客丙打车行驶16公里,他应该选择方案二
8.(2023·高一课时练习)一家货物公司计划租地建造仓库储存货物,经市场调查了解到下列信息:每月土地占地费(单位:万元)与仓库到车站的距离(单位:)成反比,每月库存货物费(单位:万元)与成正比,若在距离车站处建仓库,则为万元,为万元,下列结论正确的是( )
A.B.
C.有最大值D.无最小值
二、多选题
9.(2023·高一单元测试)某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,关于的函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后关于的函数图像.给出下列四种说法,其中正确的说法是( )
A.图(2)对应的方案是:提高票价,并提高固定成本
B.图(2)对应的方案是:保持票价不变,并降低固定成本
C.图(3)对应的方案是:提高票价,并保持固定成本不变
D.图(3)对应的方案是:提高票价,并降低固定成本
10.(2023·宁夏石嘴山·高一平罗中学期中)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润(单位:万元)与每月投入的研发经费(单位:万元)有关.已知每月投入的研发经费不高于16万元,且,利润率.现在已投入研发经费9万元,则下列判断正确的是( )
A.此时获得最大利润率B.再投入6万元研发经费才能获得最大利润
C.再投入1万元研发经费可获得最大利润率D.再投入1万元研发经费才能获得最大利润
11.(2023·高一单元测试)(多选)甲同学家到乙同学家的途中有一座公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.如图所示表示甲同学从家出发到乙同学家经过的路程y(km)与时间x(min)的关系,下列结论正确的是( )
A.甲同学从家出发到乙同学家走了60 min
B.甲从家到公园的时间是30 min
C.甲从家到公园的速度比从公园到乙同学家的速度快
D.当0≤x≤30时,y与x的关系式为y=x
12.(2023·高一单元测试)某工厂八年来某种产品总产量(即前年年产量之和)与时间(年)的函数关系如图,下列几种说法中正确的是( )
A.前三年中,总产量的增长速度越来越慢
B.前三年中,年产量的增长速度越来越慢
C.第三年后,这种产品停止生产
D.第三年后,年产量保持不变
三、填空题
13.(2023·广西桂林·高一校考期中)将进货单价40元的商品按50元一个售出,能卖出500个;若此商品每涨价1元,其销售量减少10个.为了赚到最大利润,售价应定为_________元.
14.(2023·重庆永川·高一重庆市永川北山中学校校考开学考试)如图,在半径为的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其顶点A,B在直径上,顶点C,D在圆周上,则矩形ABCD面积的最大值为__________;
15.(2023·广东汕头·高一汕头市第一中学校考期中)在一次数学实践课上,同学们进行节能住房设计,综合分析后,设计出房屋的剖面图(如图所示),屋顶所在直线方程分别是yx+3和x,为保证采光,竖直窗户的高度设计为1m,那么点A的横坐标为 __.
16.(2023·高一课时练习)某商人将每台彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多了270元,则每台彩电原价是___________元.
四、解答题
17.(2023·上海静安·高一校考期中)国家为了加强对酒类生产的管理,现对酒类销售加征附加税.已知某种酒每瓶售价为70元,不收附加税时,每年销售100万瓶.若征收附加税,规定税率为(即每销售100元要征附加税元),则每年的产销量将减少万瓶.如果要保证每年在此项经营中所收取的附加税额不少于112万元,那么附加税税率应定在什么范围?
18.(2023·上海·高一专题练习)某种商品原来每件售价为25元,年销售8万件.据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
19.(2023·河北保定·高一保定一中校考期中)我国是用水相对贫乏的国家,据统计,我国的人均水资源仅为世界平均水平的.因此我国在制定用水政策时明确提出“优先满足城乡居民生活用水”,同时为了更好地提倡节约用水,对水资源使用进行合理配置,对居民自来水用水收费采用阶梯收费.某市经物价部门批准,对居民生活用水收费如下:第一档,每户每月用水不超过立方米,则水价为每立方米元;第二档,若每户每月用水超过立方米,但不超过立方米,则超过部分水价为每立方米元;第三档,若每户每月用水超过立方米,则超过部分水价为每立方米元,同时征收其全月水费的用水调节税.设某户某月用水立方米,水费为元.
(1)试求关于的函数;
(2)若该用户当月水费为元,试求该年度的用水量;
(3)设某月甲用户用水立方米,乙用户用水立方米,若之间符合函数关系:.则当两户用水合计达到最大时,一共需要支付水费多少元?
20.(2023·河南南阳·高一统考阶段练习)某超市引进,两类有机蔬菜.在当天进货都售完的前提下,A类有机蔬菜的纯利润为3元/千克,类有机蔬菜的纯利润为5元/千克.若当天出现未售完的有机蔬菜,次日将以5折售出,此时售出的A类蔬菜的亏损为1元/千克,类蔬菜的亏损为3元/千克.已知当天未售完的有机蔬菜,次日5折促销都能售完.假设该超市A,两类有机蔬菜当天共进货100千克,其中A类有机蔬菜进货千克.假设A,类有机蔬菜进货当天可售完的质量均为50千克.
(1)试求进货当天及次日该超市这两类有机蔬菜的总盈利(单位:元)的表达式;
(2)若,求的取值范围.
21.(2023·广东佛山·高一佛山市荣山中学校考期中)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产万盒,需投入成本万元,当产量小于或等于50万盒时;当产量大于50万盒时,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)
(1)求“冰墩墩”玩具手办销售利润(万元)关于产量(万盒)的函数关系式;
(2)当产量为多少万盒时,该企业在生产中所获利润最大?
22.(2023·新疆·高一乌鲁木齐市第70中校考期中)党的二十大报告提出“积极稳妥推进碳达峰碳中和”,降低能源消耗,建设资源节约型社会.日常生活中我们使用的灯具就具有节能环保的作用,它环保不含汞,可回收再利用,功率小,高光效,长寿命,有效降低资源消耗.经过市场调查,可知生产某种灯需投入的年固定成本为3万元,每生产万件该产品,需另投入变动成本万元,在年产量不足6万件时,,在年产量不小于6万件时,.每件产品售价为6元.假设该产品每年的销量等于当年的产量.
(1)写出年利润(万元)关于年产量(万件)的函数解析式.(注:年利润年销售收入固定成本变动成本)
(2)年产量为多少万件时,年利润最大?最大年利润是多少?
旋钮的转角
(单位:度)
18
36
54
72
90
所耗燃气量
(单位:)
0.130
0.122
0.139
0.149
0.172
采购数x
客户数
10
10
5
20
5
每户每月用水量
水价
不超过的部分
3元/
超过但不超过的部分
6元/
超过的部分
9元/
相关试卷
这是一份初升高数学衔接验收卷(基础卷)(原卷+解析)—新高一暑假衔接知讲义,文件包含初升高数学衔接验收卷基础卷原卷版新高一暑假衔接知讲义pdf、初升高数学衔接验收卷基础卷解析版新高一暑假衔接知讲义pdf等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份初升高数学衔接验收卷(基础卷)(解析版)—新高一暑假衔接知讲义,共12页。
这是一份初升高数学衔接验收卷(基础卷)(原卷版)—新高一暑假衔接知讲义,共5页。