搜索
    上传资料 赚现金
    高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)
    立即下载
    加入资料篮
    高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)01
    高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)02
    高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)

    展开
    这是一份高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析),共17页。

    ①任意一个自然数都是正整数;
    ②有的等差数列也是等比数列;
    ③三角形的内角和是.
    A.0B.1C.2D.3
    2.(2021·全国·高一单元测试)下列语句是存在性命题的是( )
    A.整数n是2和5的倍数B.存在整数n,使n能被11整除
    C.若,则D.,
    3.(2022·河南)(多选)下列命题中,是全称量词命题的有( )
    A.至少有一个x使x2+2x+1=0成立
    B.对任意的x都有x2+2x+1=0成立
    C.对任意的x都有x2+2x+1=0不成立
    D.存在x使x2+2x+1=0成立
    2 命题真假的判断
    1.(2022·福建)下列四个命题中,是真命题的为( )
    A.任意,有B.任意,有
    C.存在,使D.存在,使
    2.(2021·全国·高一课时练习)已知命题p:,,命题q:,,则( )
    A.命题p,q都是真命题
    B.命题p是真命题,q是假命题
    C.命题p是假命题,q是真命题
    D.命题p,q都是假命题
    3.(2022·云南)下列命题中是全称命题并且是真命题的是( )
    A.,B.,2x为偶数
    C.所有菱形的四条边都相等D.是无理数
    4(2021·浙江)下列四个命题中,其中为真命题的是( )
    A.∀x∈R,x2+3<0B.∀x∈N,x2≥1
    C.x∈Z,x5<1D.x∈Q,x2=3
    5.(2022·广东·梅州市)(多选)下列四个命题中真命题为( )
    A.∀x∈R,2x2-3x+4>0
    B.∀x∈{1,-1,0},2x+1>0
    C.∃x∈N*,x为29的约数
    D.对实数m,命题p:∀x∈R,x2-4x+2m≥0. 命题q: m≥3.则 p是q的必要不充分条件
    6.(2022·广东·揭阳)(多选)下列存在量词命题中,为真命题的是( )
    A.有些自然数是偶数B.至少有一个x∈,使x能同时被2和3整除
    C.,|x|<0D.,x2-2x+3=0
    7.(2022·重庆)(多选)已知全集为,,是的非空子集且,则下列关系一定正确的是( )
    A.,且B.,
    C.,或D.,且
    8.(2021·湖南·长郡中学高一期中)(多选)下列命题中,是存在量词命题且为假命题的有( )
    A.,B.有的矩形不是平行四边形
    C.,D.,
    9.(2022·吉林)(多选)下列命题是假命题的是( )
    A.若,则且B.存在整数n,使n能被13整除
    C.对任意,都有D.若,则
    10.(2021·广东·大埔县)(多选)下列四个命题中,假命题是( )
    A.B.
    C.D.
    3 命题的否定
    1.(2022·广西)命题“,”的否定形式为( ).
    A.,B.,
    C.,D.,
    2.(2022·云南·峨山彝族自治县第一中学高一期中)设命题:,,则为( )
    A.,B.,
    C.,D.,
    3(2022·福建)命题“R,”的否定是( )
    A.R,B.R,
    C.R,D.R,
    4.(2022·重庆市)命题“”的否定是( )
    A.不存在B.
    C.D.
    5.(2022·江苏南通·高一期末)命题“,”的否定是( )
    A.,B.,
    C.,D.,
    6.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)命题p:存在一个自然数n使n2>2n+5成立.则p的否定的符号形式及其真假为( )
    A.n∈N,n2≤2n+5. 真B.n∈N,n2≤2n+5. 假
    C.n∈N,n2>2n+5. 假D.n∈N,n2>2n+5. 真
    7.(2021·湖北·武汉市钢城第四中学高一阶段练习)写出下列命题p的否定,并判断其真假.
    (1)p:,.
    (2)p:不论m取何实数,方程必有实数根.
    (3)p:有的三角形的三条边相等.
    (4)p:等腰梯形的对角线垂直.
    4 求参数
    1.(2022·全国·高一期末)若“”为真命题,则实数的取值范围为( )
    A.B.C.D.
    2(2022·辽宁)已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是( )
    A.(0,1)B.(0,2)C.(2,3)D.(2,4)
    3.(2021·北京市第五十七中学高一期中)命题“,”为假命题,则的取值范围为( )
    A.B.
    C.D.
    4.(2022·福建省)已知命题p:“,”,命题q:“,”.若命题和命题q都是真命题,则实数a的取值范围是( )
    A.或B.或C.D.
    5.(2022·江苏)已知命题p:∃x0∈R,x02+ax0+a<0是假命题,则实数a的取值范围是( )
    A.(﹣∞,0)∪(0,4)B.(0,4)
    C.(﹣∞,0]∪[4,+∞)D.[0,4]
    6.(2022·山西·高一阶段练习)若“,”是假命题,则a的取值范围为( )
    A.B.C.D.
    7.(2022·江苏·高一)已知命题,是假命题,则的取值范围为( )
    A.B.
    C.或D.或
    8.(2021·全国·高一专题练习)(多选)若命题:,为假命题,则实数的值可以是( )
    A.B.C.D.
    9.(2021·全国·高一课时练习)若“,”为假命题,则实数的最小值为___________.
    5 全称存在量词与充分必要条件的综合
    1(2021·山东泰安·高一期中)(多选)命题“,”为真命题的一个必要不充分条件是( )
    A.B.C.D.
    2.(2021·全国·高一课时练习)设非空集合P,Q满足,则下列命题正确的是( )
    A.,B.,
    C.,D.,
    1.5 全称量词与存在量词(精练)
    1 全称、存在命题的辨析
    1.(2021·全国·高一课时练习)下列命题中是全称量词命题的个数为( )
    ①任意一个自然数都是正整数;
    ②有的等差数列也是等比数列;
    ③三角形的内角和是.
    A.0B.1C.2D.3
    【答案】C
    【解析】命题①含有全称量词,为全称量词命题;命题②含有存在量词,为存在量词命题;命题③可以叙述为“每一个三角形的内角和都是180°”,为全称量词命题.故有2个全称量词命题.选:C.
    2.(2021·全国·高一单元测试)下列语句是存在性命题的是( )
    A.整数n是2和5的倍数B.存在整数n,使n能被11整除
    C.若,则D.,
    【答案】B
    【解析】对于A,不是命题,不能判断真假,故A错误;
    对于B,命题含有存在量词“存在”,故B是存在性命题,B正确;
    对于C,是“若p则q”的形式命题,C错误;
    对于D,是全称量词命题,D错误.故选:B
    3.(2022·河南)(多选)下列命题中,是全称量词命题的有( )
    A.至少有一个x使x2+2x+1=0成立
    B.对任意的x都有x2+2x+1=0成立
    C.对任意的x都有x2+2x+1=0不成立
    D.存在x使x2+2x+1=0成立
    【答案】BC
    【解析】A和D用的是存在量词“至少有一个”“存在”,属存在量词命题,
    B和C用的是全称量词“任意的”,属全称量词命题,
    ∴B、C是全称量词命题.故选:BC.
    2 命题真假的判断
    1.(2022·福建)下列四个命题中,是真命题的为( )
    A.任意,有B.任意,有
    C.存在,使D.存在,使
    【答案】C
    【解析】由于对任意,都有,因而有,故A为假命题.
    由于,当时,不成立,故B为假命题.
    由于,当时,,故C为真命题.
    由于使成立的数只有,而它们都不是有理数,因此没有任何一个有理数的平方等于3,故D是假命题.故选:C
    2.(2021·全国·高一课时练习)已知命题p:,,命题q:,,则( )
    A.命题p,q都是真命题
    B.命题p是真命题,q是假命题
    C.命题p是假命题,q是真命题
    D.命题p,q都是假命题
    【答案】B
    【解析】当时,,,故命题p为真命题,当时,,故命题q为假命题,
    故选:B.
    3.(2022·云南)下列命题中是全称命题并且是真命题的是( )
    A.,B.,2x为偶数
    C.所有菱形的四条边都相等D.是无理数
    【答案】C
    【解析】对于A,是全称命题,当,,故是假命题,故A不符合题意;
    对于B,是特称命题,不是全称命题,故B不符合题意;
    对于C,是全称命题,也是真命题,故C符合题意;
    对于D,是真命题,但不是全称命题,故D不符合题意.故选:C.
    4(2021·浙江)下列四个命题中,其中为真命题的是( )
    A.∀x∈R,x2+3<0B.∀x∈N,x2≥1
    C.x∈Z,x5<1D.x∈Q,x2=3
    【答案】C
    【解析】由∀x∈R都有x2≥0,则x2+3≥3,故命题“∀x∈R,x2+3<0”为假命题;
    由0∈N,当x=0时x2≥1不成立,故命题“∀x∈N,x2≥1”是假命题;
    由1∈Z,当x=1时x5<1,故命题“x∈Z,使x5<1”为真命题;
    使x2=3成立的数只有,而它们都不是有理数,因此没有任何一个有理数的平方能等于3,则命题“x∈Q,x2=3”为假命题,故选:C.
    5.(2022·广东·梅州市)(多选)下列四个命题中真命题为( )
    A.∀x∈R,2x2-3x+4>0
    B.∀x∈{1,-1,0},2x+1>0
    C.∃x∈N*,x为29的约数
    D.对实数m,命题p:∀x∈R,x2-4x+2m≥0. 命题q: m≥3.则 p是q的必要不充分条件
    【答案】ACD
    【解析】,A正确;
    ∵,则,B不正确;
    29的约数有1和29,C正确;
    ∀x∈R,x2-4x+2m≥0,则,即
    p是q的必要不充分条件,D正确;故选:ACD.
    6.(2022·广东·揭阳)(多选)下列存在量词命题中,为真命题的是( )
    A.有些自然数是偶数B.至少有一个x∈,使x能同时被2和3整除
    C.,|x|<0D.,x2-2x+3=0
    【答案】AB
    【解析】对于A,2,4都是自然数,也都是偶数,A正确;
    对于B,6是整数,6能同时被2和3整除,B正确;
    对于C,因是真命题,则,|x|<0是假命题,C不正确;
    对于D,因,成立,则,是假命题,D不正确.
    故选:AB
    7.(2022·重庆)(多选)已知全集为,,是的非空子集且,则下列关系一定正确的是( )
    A.,且B.,
    C.,或D.,且
    【答案】AB
    【解析】全集为,,是的非空子集且,则,,的关系用韦恩图表示如图,
    观察图形知,,且,A正确;
    因,必有,,B正确;
    若,则,此时,,即且,C不正确;
    因,则不存在满足且,D不正确.故选:AB
    8.(2021·湖南·长郡中学高一期中)(多选)下列命题中,是存在量词命题且为假命题的有( )
    A.,B.有的矩形不是平行四边形
    C.,D.,
    【答案】AB
    【解析】ABC均为存在量词命题,D不是存在量词命题,故D错误,
    选项A:因为,所以命题为假命题;
    选项B:因为矩形都是平行四边形,所以命题为假命题;
    选项C:,故命题为真命题,故C错误,故选:AB.
    9.(2022·吉林)(多选)下列命题是假命题的是( )
    A.若,则且B.存在整数n,使n能被13整除
    C.对任意,都有D.若,则
    【答案】CD
    【解析】对于A,根据交集的定义可知:若,则且为真命题;
    对于B,存在整数n,使n能被13整除,例如,所以为真命题;
    对于C,对任意,都有,不正确,例如,,所以为假命题;
    对于D,若,则,不正确.例如,但,所以为假命题.
    故选:CD.
    10.(2021·广东·大埔县)(多选)下列四个命题中,假命题是( )
    A.B.
    C.D.
    【答案】ACD
    【解析】对于A中,当时,不成立,所以命题“”是假命题;
    对于B中,取时,,所以命题“”为真命题;
    对于C中,根据绝对值的定义,可得恒成立,所以命题“”是假命题;
    对于D中,当时,,所以命题“”为假命题.
    故选:ACD
    3 命题的否定
    1.(2022·广西)命题“,”的否定形式为( ).
    A.,B.,
    C.,D.,
    【答案】A
    【解析】命题“,”的否定形式为,故选:A
    2.(2022·云南·峨山彝族自治县第一中学高一期中)设命题:,,则为( )
    A.,B.,
    C.,D.,
    【答案】C
    【解析】由命题:,,得:,,故选:C.
    3(2022·福建)命题“R,”的否定是( )
    A.R,B.R,
    C.R,D.R,
    【答案】C
    【解析】解:因为存在量词命题的否定为全称量词命题,
    所以命题“R,”的否定是R,.故选:C.
    4.(2022·重庆市)命题“”的否定是( )
    A.不存在B.
    C.D.
    【答案】D
    【解析】命题“”为特称量词命题,其否定为;故选:D
    5.(2022·江苏南通·高一期末)命题“,”的否定是( )
    A.,B.,
    C.,D.,
    【答案】A
    【解析】因为用存在量词否定全称命题,所以命题“,”的否定是“,”.故选:A
    6.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)命题p:存在一个自然数n使n2>2n+5成立.则p的否定的符号形式及其真假为( )
    A.n∈N,n2≤2n+5. 真B.n∈N,n2≤2n+5. 假
    C.n∈N,n2>2n+5. 假D.n∈N,n2>2n+5. 真
    【答案】B
    【解析】由于p:存在一个自然数n使得 ,∴其否定符号为: ,
    当n=5时, ,所以是假命题;故选:B.
    7.(2021·湖北·武汉市钢城第四中学高一阶段练习)写出下列命题p的否定,并判断其真假.
    (1)p:,.
    (2)p:不论m取何实数,方程必有实数根.
    (3)p:有的三角形的三条边相等.
    (4)p:等腰梯形的对角线垂直.
    【答案】(1):,;假命题.
    (2):存在一个实数,方程没有实数根;假命题.
    (3):所有的三角形的三条边不都相等;假命题.
    (4):存在一个等腰梯形,它的对角线互相不垂直;真命题.
    【解析】(1):,;所以:,;显然当时,即为假命题.
    (2):不论取何实数值,方程必有实数根;所以:存在一个实数,方程没有实数根;若方程没有实数根,则判别式,此时不等式无解,即为假命题.
    (3):有的三角形的三条边相等;
    :所有的三角形的三条边不都相等,为假命题.正三角形的三条边相等,则命题是真命题,所以是假命题.
    (4):等腰梯形的对角线垂直;则是假命题,
    所以:存在一个等腰梯形,它的对角线互相不垂直,是假命题,是真命题.
    4 求参数
    1.(2022·全国·高一期末)若“”为真命题,则实数的取值范围为( )
    A.B.C.D.
    【答案】B
    【解析】为真命题,∴,,
    ∵在区间上单调递增,,即,
    ∴实数的取值范围为.故选B
    2(2022·辽宁)已知命题p:“∃x∈R,x2+2ax+a≤0”为假命题,则实数a的取值范围是( )
    A.(0,1)B.(0,2)C.(2,3)D.(2,4)
    【答案】A
    【解析】命题p:“∃x∈R,x2+2ax+a≤0”为假命题,:“”为真命题,
    ,解得.故选:A.
    3.(2021·北京市第五十七中学高一期中)命题“,”为假命题,则的取值范围为( )
    A.B.
    C.D.
    【答案】A
    【解析】命题“,”为假命题,该命题的否定“,”为真命题,
    即在上恒成立,在单调递增,,解得.
    故选:A.
    4.(2022·福建省)已知命题p:“,”,命题q:“,”.若命题和命题q都是真命题,则实数a的取值范围是( )
    A.或B.或C.D.
    【答案】D
    【解析】若,,则∴.
    若,,则,解得或.
    ∵命题和命题q都是真命题,∴或,∴.故选D.
    5.(2022·江苏)已知命题p:∃x0∈R,x02+ax0+a<0是假命题,则实数a的取值范围是( )
    A.(﹣∞,0)∪(0,4)B.(0,4)
    C.(﹣∞,0]∪[4,+∞)D.[0,4]
    【答案】D
    【解析】由命题p:∃x0∈R,x02+ax0+a<0是假命题可知:∀x∈R,x2+ax+a≥0,
    ∴=a2﹣4×1×a≤0,解得:a∈[0,4].故选:D.
    6.(2022·山西·高一阶段练习)若“,”是假命题,则a的取值范围为( )
    A.B.C.D.
    【答案】C
    【解析】因为 “,”是假命题,所以 “,”是真命题,
    所以当时,成立;当时,则,解得,综上:,
    所以a的取值范围为,故选:C
    7.(2022·江苏·高一)已知命题,是假命题,则的取值范围为( )
    A.B.
    C.或D.或
    【答案】A
    【解析】因为命题,是假命题,
    所以,是真命题,
    于是有:.故选:A.
    8.(2021·全国·高一专题练习)(多选)若命题:,为假命题,则实数的值可以是( )
    A.B.C.D.
    【答案】ABD
    【解析】因为命题:,为假命题,所以:,为真命题.
    当时,,符合题意,
    当时,需满足解得.
    综上,当时,是真命题.即当时,命题:,为假命题.故选:ABD.
    9.(2021·全国·高一课时练习)若“,”为假命题,则实数的最小值为___________.
    【答案】
    【解析】因为“,”为假命题,所以“,”为真命题,所以对恒成立,即.故答案为:.
    5 全称存在量词与充分必要条件的综合
    1(2021·山东泰安·高一期中)(多选)命题“,”为真命题的一个必要不充分条件是( )
    A.B.C.D.
    【答案】BC
    【解析】由题得.
    因为是的充要条件,是的必要非充分条件,是的必要非充分条件,是的非充分非必要条件.故选:BC
    2.(2021·全国·高一课时练习)设非空集合P,Q满足,则下列命题正确的是( )
    A.,B.,
    C.,D.,
    【答案】A
    【解析】因为非空集合P,Q满足,所以,
    对于AC,由子集的定义知P中任意一个元素都是Q中的元素,即,,故A正确,C错误;
    对于BD,由,分类讨论:若P是Q的真子集,则,;若,则,;故 BD错误.故选:A.
    相关试卷

    高一数学一隅三反系列(人教A版必修第一册)1.4充分、必要条件(精练)(原卷版+解析): 这是一份高一数学一隅三反系列(人教A版必修第一册)1.4充分、必要条件(精练)(原卷版+解析),共20页。试卷主要包含了条件等内容,欢迎下载使用。

    高一数学一隅三反系列(人教A版必修第一册)期末考重难点归纳总结(原卷版+解析): 这是一份高一数学一隅三反系列(人教A版必修第一册)期末考重难点归纳总结(原卷版+解析),共31页。试卷主要包含了集合与逻辑用语,不等式,函数,三角函数等内容,欢迎下载使用。

    高中数学人教A版 (2019)必修 第一册第一章 集合与常用逻辑用语1.5 全称量词与存在量词当堂达标检测题: 这是一份高中数学人教A版 (2019)必修 第一册<a href="/sx/tb_c4000259_t7/?tag_id=28" target="_blank">第一章 集合与常用逻辑用语1.5 全称量词与存在量词当堂达标检测题</a>,共21页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高一数学一隅三反系列(人教A版必修第一册)1.5全称量词与存在量词(精练)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map