|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届高考数学一轮复习三年真题汇编专题16双曲线
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2025届高考一轮复习三年真题汇编专题16双曲线参考答案.doc
    • 练习
      2025届高考一轮复习三年真题汇编专题16双曲线.docx
    2025届高考数学一轮复习三年真题汇编专题16双曲线01
    2025届高考数学一轮复习三年真题汇编专题16双曲线02
    2025届高考数学一轮复习三年真题汇编专题16双曲线03
    2025届高考数学一轮复习三年真题汇编专题16双曲线01
    2025届高考数学一轮复习三年真题汇编专题16双曲线02
    还剩18页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届高考数学一轮复习三年真题汇编专题16双曲线

    展开
    这是一份2025届高考数学一轮复习三年真题汇编专题16双曲线,文件包含2025届高考一轮复习三年真题汇编专题16双曲线参考答案doc、2025届高考一轮复习三年真题汇编专题16双曲线docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    1、双曲线的定义
    (1)平面内与两个定点F1,F2(|F1F2|=2c>0)的距离之差的绝对值为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点.
    (2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.
    ①当2a<|F1F2|时,M点的轨迹是双曲线;
    ②当2a=|F1F2|时,M点的轨迹是两条射线;
    ③当2a>|F1F2|时,M点不存在.
    2、双曲线的标准方程和几何性质
    3、双曲线中的几个常用结论
    (1)双曲线的焦点到其渐近线的距离为b.
    (2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.
    (3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为eq \f(2b2,a),异支的弦中最短的为实轴,其长为2a.
    (4)设P,A,B是双曲线上的三个不同的点,其中A,B关于原点对称,直线PA,PB斜率存在且不为0,则直线PA与PB的斜率之积为eq \f(b2,a2).
    (5)P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则,其中θ为∠F1PF2.
    (6)等轴双曲线
    ①定义:中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线.
    ②性质:a=b;e=eq \r(2);渐近线互相垂直;等轴双曲线上任意一点到中心的距离是它到两焦点距离的等比中项.
    (7)共轭双曲线
    ①定义:若一条双曲线的实轴和虚轴分别是另一条双曲线的虚轴和实轴,那么这两条双曲线互为共轭双曲线.
    ②性质:它们有共同的渐近线;它们的四个焦点共圆;它们的离心率的倒数的平方和等于1.
    2提升学科能力
    一、单选题
    1.(2024·全国甲卷理科·高考真题)已知双曲线的上、下焦点分别为,点在该双曲线上,则该双曲线的离心率为( )
    A.4B.3C.2D.
    2.(2024·天津·高考真题)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )
    A.B.C.D.
    3.(2023·全国乙卷理科·高考真题)设A,B为双曲线上两点,下列四个点中,可为线段AB中点的是( )
    A.B.C.D.
    4.(2023·全国甲卷理科·高考真题)已知双曲线的离心率为,C的一条渐近线与圆交于A,B两点,则( )
    A.B.C.D.
    5.(2023·天津·高考真题)已知双曲线的左、右焦点分别为.过向一条渐近线作垂线,垂足为.若,直线的斜率为,则双曲线的方程为( )
    A.B.
    C.D.
    6.(2022·天津·高考真题)已知抛物线分别是双曲线的左、右焦点,抛物线的准线过双曲线的左焦点,与双曲线的渐近线交于点A,若,则双曲线的标准方程为( )
    A.B.
    C.D.
    二、多选题
    7.(2022·全国乙卷理科·高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为( )
    A.B.C.D.
    三、填空题
    8.(2023·北京·高考真题)已知双曲线C的焦点为和,离心率为,则C的方程为 .
    9.(2024·新课标全国I卷·高考真题)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为 .
    10.(2024·天津·高考真题)若函数恰有一个零点,则的取值范围为 .
    11.(2023·新课标全国I卷·高考真题)已知双曲线的左、右焦点分别为.点在上,点在轴上,,则的离心率为 .
    12.(2022·浙江·高考真题)已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是 .
    13.(2022·全国甲卷理科·高考真题)若双曲线的渐近线与圆相切,则 .
    14.(2022·全国甲卷文科·高考真题)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值 .
    15.(2022·北京·高考真题)已知双曲线的渐近线方程为,则 .
    四、解答题
    16.(2024·上海·高考真题)已知双曲线左右顶点分别为,过点的直线交双曲线于两点.
    (1)若离心率时,求的值.
    (2)若为等腰三角形时,且点在第一象限,求点的坐标.
    (3)连接并延长,交双曲线于点,若,求的取值范围.
    17.(2023·新课标全国II卷·高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
    (1)求C的方程;
    (2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
    18.(2022·新高考全国II卷·高考真题)已知双曲线的右焦点为,渐近线方程为.
    (1)求C的方程;
    (2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
    ①M在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    标准方程
    eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)
    eq \f(y2,a2)-eq \f(x2,b2)=1(a>0,b>0)
    图形
    性质
    范围
    x≥a或x≤-a,y∈R
    y≤-a或y≥a,x∈R
    对称性
    对称轴:坐标轴,对称中心:原点
    顶点
    A1(-a,0),A2(a,0)
    A1(0,-a),A2(0,a)
    渐近线
    y=±eq \f(b,a)x
    y=±eq \f(a,b)x
    离心率
    e=eq \f(c,a),e∈(1,+∞)
    实、虚轴
    线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;
    线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;
    a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长
    a,b,c的关系
    c2=a2+b2(c>a>0,c>b>0)
    相关试卷

    专题16 算法初步- 【真题汇编】五年(2019-2023)高考数学真题分项汇编(全国通用): 这是一份专题16 算法初步- 【真题汇编】五年(2019-2023)高考数学真题分项汇编(全国通用),文件包含专题16算法初步-学易金卷五年2019-2023高考数学真题分项汇编原卷版docx、专题16算法初步-学易金卷五年2019-2023高考数学真题分项汇编解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    【专项复习】高考数学 专题13 双曲线 (名校模拟汇编).zip: 这是一份【专项复习】高考数学 专题13 双曲线 (名校模拟汇编).zip,文件包含专项复习高考数学专题13双曲线名校模拟汇编原卷版docx、专项复习高考数学专题13双曲线名校模拟汇编解析版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。

    专题16 统计-2023年高考数学真题专题汇编(新高考卷): 这是一份专题16 统计-2023年高考数学真题专题汇编(新高考卷),文件包含专题16统计原卷版docx、专题16统计解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map