年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版)

    2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版)第1页
    2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版)第2页
    2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版)

    展开

    这是一份2024年新高考地区数学名校地市选填压轴题好题汇编(五)(原卷版),共11页。
    A.2B.C.3D.
    2.(2023·广东深圳·高三校考阶段练习)已知函数,直线,若有且仅有一个整数,使得点在直线l上方,则实数a的取值范围是( )
    A.B.
    C.D.
    3.(2023·广东深圳·高三深圳市云顶学校校考阶段练习)已知实数,满足,,,,,,则( )
    A.2B.4C.6D.8
    4.(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)如图1,在高为的直三棱柱容器中,现往该容器内灌进一些水,水深为2,然后固定容器底面的一边于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则容器的高为( )

    A.B.3C.4D.6
    5.(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)已知抛物线C:()的焦点为F,点M在抛物线C上,射线FM与y轴交于点,与抛物线C的准线交于点N,,则p的值等于( )
    A.B.2C.D.4
    6.(2023·广东深圳·高三统考阶段练习)我国人脸识别技术处于世界领先地位.所谓人脸识别,就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,余弦相似度为向量,夹角的余弦值,记作,余弦距离为.已知,,,若P,Q的余弦距离为,,则Q,R的余弦距离为( )
    A.B.C.D.
    7.(2023·广东佛山·高三校考阶段练习)已知双曲线的离心率为2,左、右顶点分别为,右焦点为,点在的右支上,且满足,则( )
    A.B.1C.D.2
    8.(2023·广东佛山·高三佛山市顺德区容山中学校考阶段练习)已知函数,若存在实数,满足,且,则的取值范围是
    A.B.C.D.
    9.(2023·湖北·高三校联考阶段练习)在锐角中,角的对边分别为,且的面积,则的取值范围为( )
    A.B.C.D.
    10.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)抛物线C:的焦点为F,顶点为O,其上两点(均异于原点O)满足;过O点作于C,则的取值范围是( )
    A.B.C.D.
    11.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)求值:( )
    A.B.C.1D.
    12.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)如图,三棱台中,,现在以下四项中选择一个,可以证明的条件有( )
    ①;②;
    ③;④;
    A.4个B.3个C.2个D.1个
    13.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)已知,若它的图象恒在x轴上方,则( )
    A.的单调递增区间为
    B.方程可能有三个实数根
    C.若函数在处的切线经过原点,则
    D.过图象上任何一点,最多可作函数的8条切线
    14.(2023·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)已知,,,则( )
    A.B.C.D.
    15.(2023·山东泰安·高三校考阶段练习)已知函数的图象在点处的切线方程是,则( )
    A.2B.3C.4D.
    16.(2023·山东济宁·高三校考阶段练习)已知函数,,若成立,则的最小值为( )
    A.B.C.D.
    17.(2023·山东泰安·高三新泰市第一中学校考阶段练习)是定义在上的偶函数,对,都有,且当时,.若在区间内关于x的方程至少有2个不同的实数根,至多有3个不同的实数根,则a的取值范围是( )
    A.B.C.D.
    18.(多选题)(2023·广东惠州·高三校考阶段练习)如图,在棱长为2的正方体中,,,分别是,,的中点,则( )

    A.,,,四点共面
    B.
    C.直线平面
    D.三棱锥的体积为
    19.(多选题)(2023·广东惠州·高三校考阶段练习)已知,且,,,则( )
    A.的取值范围为B.存在,,使得
    C.当时,D.t的取值范围为
    20.(多选题)(2023·广东深圳·高三校考阶段练习)数列首项,对一切正整数,都有,则( )
    A.数列是等差数列
    B.对一切正整数都有
    C.存在正整数,使得
    D.对任意小的正数,存在,使得
    21.(多选题)(2023·广东深圳·高三校考阶段练习)已知函数,则( )
    A.当时,函数的最小值为
    B.当时,函数的极大值点为
    C.存在实数使得函数在定义域上单调递增
    D.若恒成立,则实数的取值范围为
    22.(多选题)(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)已知同底面的两个正三棱锥和均内接于球O,且正三棱锥的侧面与底面所成角的大小为,则下列说法正确的是( ).
    A.平面QBC
    B.设三棱锥和的体积分别为和,则
    C.平面ABC截球O所得的截面面积是球O表面积的倍
    D.二面角的正切值为
    23.(多选题)(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)已知,若分别是方程和的根,则下列说法正确的是( )
    A. B.C.D.
    24.(多选题)(2023·广东深圳·高三统考阶段练习)已知函数的定义域为,且,,为偶函数,则( )
    A.为偶函数B.
    C.D.
    25.(多选题)(2023·广东深圳·高三统考阶段练习)如图,圆锥内有一个内切球,球与母线分别切于点.若是边长为2的等边三角形,为圆锥底面圆的中心,为圆的一条直径(与不重合),则下列说法正确的是( )

    A.球的表面积与圆锥的侧面积之比为
    B.平面截得圆锥侧面的交线形状为抛物线
    C.四面体的体积的取值范围是
    D.若为球面和圆锥侧面的交线上一点,则最大值为
    26.(多选题)(2023·广东佛山·高三校考阶段练习)已知函数任一对称轴与其相邻的零点之间的距离为,若的图像向左平移个单位得到的图象关于轴对称,则( )
    A.B.若在单调递增,则
    C.曲线的一条对称轴是D.曲与直线有5个交点
    27.(多选题)(2023·广东佛山·高三校考阶段练习)如图所示,一个封闭的圆台容器(容器壁厚度忽略不计),圆台的上下底面半经分别为3和1,母线长为4,则( )
    A.圆台容器的的容积为
    B.圆台的外接球的半径为
    C.容器中可放入一个半径为1.7球体
    D.圆台容器内放入一个可以任意转动的正方体,则正方体棱长的最大值为2
    28.(多选题)(2023·广东佛山·高三佛山市顺德区容山中学校考阶段练习)在正方体中,点在线段上,且,动点在线段上(含端点),则下列说法正确的有( )
    A.三棱锥的体积为定值
    B.若直线平面,则
    C.不存在点使平面平面
    D.存在点使直线与平面所成角为
    29.(多选题)(2023·湖北·高三校联考阶段练习)某高中一年级有3个班级,(1)班、(2)班、(3)班的学生人数之比为.在某次数学考试中,(1)班的及格率为,(2)班的及格率为,(3)班的及格率为,从该校随机抽取一名高一学生.记事件“该学生本次数学为试及格”,事件“该学生在高一(i)班”,则( )
    A.
    B.与均不相互独立
    C.
    D.若从这次高一年级数学考试及格的学生中随机抽取一人,则该同学来自(1)班的概率最大
    30.(多选题)(2023·湖北·高三校联考阶段练习)已知函数定义域为,且的图象关于点对称,函数关于直线对称,则下列说法正确的是( )
    A.为奇函数B.
    C.D.
    31.(多选题)(2023·湖北·高三校联考阶段练习)在中,内角的对边分别为,则下列说法中正确的有( )
    A.若,则面积的最大值为
    B.若,则面积的最大值为
    C.若角的内角平分线交于点,且,则面积的最大值为3
    D.若为的中点,且,则面积的最大值为
    32.(多选题)(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)如图,在平整的地面上任一点O处观测点P处的太阳时,可以将太阳一日的运动轨迹看作一个圆,且这个圆在以O为球心,半径很大的球面上.白天观测到的轨迹是其在地面以上的部分.在点O处立一根杆OA(A也可看作球心),它在地面上形成日影,且P,A,三点共线,则白天时点在地面上运动的轨迹可能是( )
    A.一个抛物线B.一条直线C.一个半椭圆D.双曲线的一支
    39.(多选题)(2023·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)已知a,b,c分别是三个内角A,B,C的对边,下列四个命题中正确的是( )
    A.若,则或
    B.若,则为锐角三角形
    C.若,则是等腰三角形
    D.若,,分别表示,的面积,则
    40.(多选题)(2023·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)已知定义在上的函数,其导函数的定义域也为.若,且为奇函数,则( )
    A.B.
    C.D.
    41.(多选题)(2023·山东泰安·高三校考阶段练习)已知函数,令,则( )
    A.或时,有1个零点
    B.若有2个零点,则或
    C.的值域是
    D.若有3个零点,且,则的取值范围为
    42.(多选题)(2023·山东济宁·高三校考阶段练习)已知函数的定义域为,,则( ).
    A.B.
    C.是偶函数D.为的极小值点
    43.(多选题)(2023·山东泰安·高三新泰市第一中学校考阶段练习)已知函数是定义域为的偶函数,满足,当时,,则( )
    A.的最小值是,最大值是B.的周期为
    C.D.
    44.(2023·广东惠州·高三校考阶段练习)已知椭圆和双曲线有共同的焦点,P,Q分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于 .
    45.(2023·广东惠州·高三校考阶段练习)记函数的最小正周期为T,且,.若为的一个零点,则 .
    46.(2023·广东深圳·高三校考阶段练习)已知函数,直线,是的两条切线,,相交于点,若,则点横坐标的取值范围是 .
    47.(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)已知点P是椭圆上一点,椭圆C在点P处的切线l与圆交于A,B两点,当三角形AOB的面积取最大值时,切线l的斜率等于
    48.(2023·广东佛山·高三佛山市南海区桂城中学校考阶段练习)在空间直角坐标系O-xyz中,三元二次方程所对应的曲面统称为二次曲面.比如方程表示球面,就是一种常见的二次曲面.二次曲而在工业、农业、建筑等众多领域应用广泛.已知点P(x,y,z)是二次曲面上的任意一点,且,,,则当取得最小值时,的最大值为 .
    49.(2023·广东深圳·高三统考阶段练习)正方体的棱长为2,底面内(含边界)的动点到直线的距离与到平面的距离相等,则三棱锥体积的取值范围为 .
    50.(2023·广东深圳·高三统考阶段练习)先将函数的图象向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的,纵坐标不变,所得图象与函数的图象关于x轴对称,若函数在上恰有两个零点,且在上单调递增,则的取值范围是 .
    51.(2023·广东佛山·高三校考阶段练习)正方体的棱长为,每条棱所在直线与平面所成的角都相等,则平面截正方体所得截面面积的的最大值为 .
    52.(2023·广东佛山·高三佛山市顺德区容山中学校考阶段练习)如图,在中,已知,点D,E分别在边AB,AC上,且 ,点F为线段DE上的动点,则的取值范围是 .
    53.(2023·湖北·高三校联考阶段练习)在等比数列中,,则 .
    54.(2023·湖北·高三校联考阶段练习)已知,是椭圆的左右顶点,是双曲线在第一象限上的一点,直线,分别交椭圆于另外的点,.若直线过椭圆的右焦点,且,则椭圆的离心率为 .
    55.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)已知矩形和另一点E,,,且,连接交直线于点F,若的面积为6,则 .
    56.(2023·湖北武汉·高三武汉市第一中学校联考阶段练习)一张圆形餐桌前有个人,每个人面前及餐桌正中央均各摆放一道菜.现规定每人只能在相邻两人或餐桌中心的三道菜中随机夹取一道菜,每个人都各夹过一次菜后,记未被夹取过的菜肴数为,则 ,的通项公式为 .
    57.(2023·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)已知函数,,,在内恰有两个极值点,且,则的所有可能取值构成的集合是 .
    58.(2023·山东菏泽·高三山东省鄄城县第一中学校考阶段练习)已知锐角,角所对的边分别为 ,若,,则a的取范围是 .
    59.(2023·山东泰安·高三校考阶段练习)已知定义在上的函数满足:对任意实数a,b都有,且当时,.若,则不等式的解集为 .
    60.(2023·山东济宁·高三校考阶段练习)已知函数,若恒成立,则a的取值范是 .
    61.(2023·山东泰安·高三新泰市第一中学校考阶段练习)已知正实数x,y满足,函数的最小值为,则实数取值的集合为 .

    相关试卷

    2024年新高考地区数学名校地市选填压轴题好题汇编(二十)(原卷及解析版):

    这是一份2024年新高考地区数学名校地市选填压轴题好题汇编(二十)(原卷及解析版),文件包含2024年新高考地区数学名校地市选填压轴题好题汇编二十原卷版docx、2024年新高考地区数学名校地市选填压轴题好题汇编二十解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。

    2024年新高考地区数学名校地市选填压轴题好题汇编(五):

    这是一份2024年新高考地区数学名校地市选填压轴题好题汇编(五),文件包含2024年新高考地区数学名校地市选填压轴题好题汇编五原卷版docx、2024年新高考地区数学名校地市选填压轴题好题汇编五解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    2024年新高考地区数学名校地市选填压轴题好题汇编(五):

    这是一份2024年新高考地区数学名校地市选填压轴题好题汇编(五),文件包含2024年新高考地区数学名校地市选填压轴题好题汇编五原卷版docx、2024年新高考地区数学名校地市选填压轴题好题汇编五解析版docx等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map