终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)

    立即下载
    加入资料篮
    2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)第1页
    2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)第2页
    2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)

    展开

    这是一份2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析),共24页。

    知识梳理
    1.用“五点(画图)法”作正弦函数和余弦函数的简图
    (1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),1)),____________,____________,(2π,0).
    (2)在余弦函数y=cs x,x∈[0,2π]的图象中,五个关键点是:(0,1),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),0)),____________,____________,(2π,1).
    2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
    常用结论
    1.对称性与周期性
    (1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是eq \f(1,2)个周期,相邻的对称中心与对称轴之间的距离是eq \f(1,4)个周期.
    (2)正切曲线相邻两对称中心之间的距离是eq \f(1,2)个周期.
    2.奇偶性
    若f(x)=Asin(ωx+φ)(A,ω≠0),则
    (1)f(x)为偶函数的充要条件是φ=eq \f(π,2)+kπ(k∈Z).
    (2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)y=cs x在第一、二象限内单调递减.( )
    (2)若非零常数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周期.( )
    (3)函数y=sin x图象的对称轴方程为x=2kπ+eq \f(π,2)(k∈Z).( )
    (4)函数y=tan x在整个定义域上是增函数.( )
    教材改编题
    1.若函数y=2sin 2x-1的最小正周期为T,最大值为A,则( )
    A.T=π,A=1 B.T=2π,A=1
    C.T=π,A=2 D.T=2π,A=2
    2.函数y=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(3π,4)))的单调递减区间为________________.
    3.函数y=3-2cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的最大值为______,此时x=__________.
    题型一 三角函数的定义域和值域
    例1 (1)函数y=eq \r(cs x-\f(\r(3),2))的定义域为( )
    A.eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,6),\f(π,6)))
    B.eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,6),kπ+\f(π,6)))(k∈Z)
    C.eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,6),2kπ+\f(π,6)))(k∈Z)
    D.R
    听课记录:______________________________________________________________
    ________________________________________________________________________
    (2)函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(3π,2)))-3cs x的最小值为________.
    听课记录:______________________________________________________________
    ________________________________________________________________________
    (3)函数y=sin x-cs x+sin xcs x的值域为________.
    听课记录:______________________________________________________________
    ________________________________________________________________________
    思维升华 三角函数值域的不同求法
    (1)把所给的三角函数式变换成y=Asin(ωx+φ)的形式求值域.
    (2)把sin x或cs x看作一个整体,转换成二次函数求值域.
    (3)利用sin x±cs x和sin xcs x的关系转换成二次函数求值域.
    跟踪训练1 (1)(2021·北京)函数f(x)=cs x-cs 2x,试判断函数的奇偶性及最大值( )
    A.奇函数,最大值为2
    B.偶函数,最大值为2
    C.奇函数,最大值为eq \f(9,8)
    D.偶函数,最大值为eq \f(9,8)
    (2)函数y=lg sin x+eq \r(cs x-\f(1,2))的定义域为________________.
    题型二 三角函数的周期性与对称性
    例2 (1)设函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))+eq \f(3,4),则下列叙述正确的是( )
    A.f(x)的最小正周期为2π
    B.f(x)的图象关于直线x=eq \f(π,12)对称
    C.f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2),π))上的最小值为-eq \f(5,4)
    D.f(x)的图象关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),0))对称
    听课记录:______________________________________________________________
    ________________________________________________________________________
    (2)函数f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)+φ))+1,φ∈(0,π),且f(x)为偶函数,则φ=________,f(x)图象的对称中心为________________.
    听课记录:______________________________________________________________
    ________________________________________________________________________
    思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y=Asin ωx或y=Atan ωx的形式,而偶函数一般可化为y=Acs ωx的形式.
    (2)周期的计算方法:利用函数y=Asin(ωx+φ),y=Acs(ωx+φ)(ω>0)的周期为eq \f(2π,ω),函数y=Atan(ωx+φ)(ω>0)的周期为eq \f(π,ω)求解.
    跟踪训练2 (1)(2022·新高考全国Ⅰ)记函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,4)))+b(ω>0)的最小正周期为T.若eq \f(2π,3)0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω0),则“函数f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,6),\f(2π,3)))上单调递增”是“0

    相关学案

    2024年高考数学第一轮复习讲义第四章4.3 两角和与差的正弦、余弦和正切公式(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第四章4.3 两角和与差的正弦、余弦和正切公式(学生版+解析),共16页。

    2024年高考数学第一轮复习讲义第四章4.2 同角三角函数的基本关系式及诱导公式(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第四章4.2 同角三角函数的基本关系式及诱导公式(学生版+解析),共18页。

    2024年高考数学第一轮复习讲义第四章4.1 任意角和弧度制、三角函数的概念(学生版+解析):

    这是一份2024年高考数学第一轮复习讲义第四章4.1 任意角和弧度制、三角函数的概念(学生版+解析),共21页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map