所属成套资源:2024年高考数学第一轮复习精品讲义(学生版+解析)
2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析)
展开
这是一份2024年高考数学第一轮复习讲义第四章4.5 三角函数的图象与性质(学生版+解析),共24页。
知识梳理
1.用“五点(画图)法”作正弦函数和余弦函数的简图
(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),1)),____________,____________,(2π,0).
(2)在余弦函数y=cs x,x∈[0,2π]的图象中,五个关键点是:(0,1),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),0)),____________,____________,(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
常用结论
1.对称性与周期性
(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是eq \f(1,2)个周期,相邻的对称中心与对称轴之间的距离是eq \f(1,4)个周期.
(2)正切曲线相邻两对称中心之间的距离是eq \f(1,2)个周期.
2.奇偶性
若f(x)=Asin(ωx+φ)(A,ω≠0),则
(1)f(x)为偶函数的充要条件是φ=eq \f(π,2)+kπ(k∈Z).
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)y=cs x在第一、二象限内单调递减.( )
(2)若非零常数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周期.( )
(3)函数y=sin x图象的对称轴方程为x=2kπ+eq \f(π,2)(k∈Z).( )
(4)函数y=tan x在整个定义域上是增函数.( )
教材改编题
1.若函数y=2sin 2x-1的最小正周期为T,最大值为A,则( )
A.T=π,A=1 B.T=2π,A=1
C.T=π,A=2 D.T=2π,A=2
2.函数y=-taneq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(3π,4)))的单调递减区间为________________.
3.函数y=3-2cseq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的最大值为______,此时x=__________.
题型一 三角函数的定义域和值域
例1 (1)函数y=eq \r(cs x-\f(\r(3),2))的定义域为( )
A.eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(π,6),\f(π,6)))
B.eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,6),kπ+\f(π,6)))(k∈Z)
C.eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,6),2kπ+\f(π,6)))(k∈Z)
D.R
听课记录:______________________________________________________________
________________________________________________________________________
(2)函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(3π,2)))-3cs x的最小值为________.
听课记录:______________________________________________________________
________________________________________________________________________
(3)函数y=sin x-cs x+sin xcs x的值域为________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 三角函数值域的不同求法
(1)把所给的三角函数式变换成y=Asin(ωx+φ)的形式求值域.
(2)把sin x或cs x看作一个整体,转换成二次函数求值域.
(3)利用sin x±cs x和sin xcs x的关系转换成二次函数求值域.
跟踪训练1 (1)(2021·北京)函数f(x)=cs x-cs 2x,试判断函数的奇偶性及最大值( )
A.奇函数,最大值为2
B.偶函数,最大值为2
C.奇函数,最大值为eq \f(9,8)
D.偶函数,最大值为eq \f(9,8)
(2)函数y=lg sin x+eq \r(cs x-\f(1,2))的定义域为________________.
题型二 三角函数的周期性与对称性
例2 (1)设函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)))+eq \f(3,4),则下列叙述正确的是( )
A.f(x)的最小正周期为2π
B.f(x)的图象关于直线x=eq \f(π,12)对称
C.f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2),π))上的最小值为-eq \f(5,4)
D.f(x)的图象关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3),0))对称
听课记录:______________________________________________________________
________________________________________________________________________
(2)函数f(x)=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x-\f(π,3)+φ))+1,φ∈(0,π),且f(x)为偶函数,则φ=________,f(x)图象的对称中心为________________.
听课记录:______________________________________________________________
________________________________________________________________________
思维升华 (1)奇偶性的判断方法:三角函数中奇函数一般可化为y=Asin ωx或y=Atan ωx的形式,而偶函数一般可化为y=Acs ωx的形式.
(2)周期的计算方法:利用函数y=Asin(ωx+φ),y=Acs(ωx+φ)(ω>0)的周期为eq \f(2π,ω),函数y=Atan(ωx+φ)(ω>0)的周期为eq \f(π,ω)求解.
跟踪训练2 (1)(2022·新高考全国Ⅰ)记函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+\f(π,4)))+b(ω>0)的最小正周期为T.若eq \f(2π,3)0)的单调区间时,要视“ωx+φ”为一个整体,通过解不等式求解.但如果ω0),则“函数f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,6),\f(2π,3)))上单调递增”是“0
相关学案
这是一份2024年高考数学第一轮复习讲义第四章4.3 两角和与差的正弦、余弦和正切公式(学生版+解析),共16页。
这是一份2024年高考数学第一轮复习讲义第四章4.2 同角三角函数的基本关系式及诱导公式(学生版+解析),共18页。
这是一份2024年高考数学第一轮复习讲义第四章4.1 任意角和弧度制、三角函数的概念(学生版+解析),共21页。