还剩81页未读,
继续阅读
成套系列资料,整套一键下载
新高考数学大一轮复习讲义之方法技巧专题30直线、平面平行的判定与性质(原卷版+解析)
展开
专题30 直线、平面平行的判定与性质 【考点预测】知识点一:直线和平面平行1.定义直线与平面没有公共点,则称此直线与平面平行,记作∥2.判定方法(文字语言、图形语言、符号语言)3.性质定理(文字语言、图形语言、符号语言)知识点二:两个平面平行1.定义没有公共点的两个平面叫作平行平面,用符号表示为:对于平面和,若,则∥2.判定方法(文字语言、图形语言、符号语言)3.性质定理(文字语言、图形语言、符号语言)【方法技巧与总结】线线平行、线面平行、面面平行的转换如图所示.性质性质性质判定判定判定线∥面线∥线面∥面(1)证明直线与平面平行的常用方法:①利用定义,证明直线与平面没有公共点,一般结合反证法证明;②利用线面平行的判定定理,即线线平行线面平行.辅助线的作法为:平面外直线的端点进平面,同向进面,得平行四边形的对边,不同向进面,延长交于一点得平行于第三边的线段;③利用面面平行的性质定理,把面面平行转化成线面平行;(2)证明面面平行的常用方法:①利用面面平行的定义,此法一般与反证法结合;②利用面面平行的判定定理;③利用两个平面垂直于同一条直线;④证明两个平面同时平行于第三个平面.(3)证明线线平行的常用方法:①利用直线和平面平行的判定定理;②利用平行公理;【题型归纳目录】题型一:平行的判定题型二:线面平行构造之三角形中位线法题型三:线面平行构造之平行四边形法题型四:线面平行转化为面面平行题型五:利用线面平行的性质证明线线平行题型六:面面平行的证明题型七:面面平行的性质【典例例题】题型一:平行的判定例1.(2023·上海·高三专题练习)设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法错误的是( )A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则例2.(2023·上海静安·二模)在下列判断两个平面与平行的4个命题中,真命题的个数是( ).(1)、都垂直于平面r,那么∥.(2)、都平行于平面r,那么∥.(3)、都垂直于直线l,那么∥.(4)如果l、m是两条异面直线,且∥,∥,∥,∥,那么∥A.0 B.1 C.2 D.3例3.(2023·宁夏·银川一中模拟预测(文))如图,在下列四个正方体中,、为正方体的两个顶点,、、为所在棱的中点,则在这四个正方体中,直线不平行于平面的是( )A. B.C. D.例4.(2023·浙江·海宁中学模拟预测)已知是不全平行的直线,是不同的平面,则下列能够得到的是( )A.B.C.D.例5.(2023·全国·高三专题练习)已知,是空间两个不同的平面,,是空间两条不同的直线,下列说法中正确的是( )A.,则B.,,则C.平面内的不共线三点到平面β的距离相等,则与平行D.如果一条直线与一个平面平行,那么这条直线与此平面内的无数条直线平行例6.(2023·陕西·西北工业大学附属中学模拟预测(理))如图,在正方形中,M,N分别是,的中点,则直线AM与平面BND的位置关系是( ).A.垂直 B.平行 C.相交但不垂直 D.无法确定例7.(2023·全国·高三专题练习)已知三条直线a,b,c和两个平面,下列命题正确的是( )A.若,则 B.若,则C.若,则 D.若,则【方法技巧与总结】排除法:画一个正方体,在正方体内部或表面找线或面进行排除.题型二:线面平行构造之三角形中位线法例8.(2023·山西吕梁·三模(文))如图,在四棱柱中,底面是平行四边形,,侧面是矩形,为的中点,.(1)证明:平面;(2)求三棱锥的体积.例9.(2023·全国·高三专题练习)如图,在三棱锥中,O,M分别为AB,VA的中点.求证:平面MOC.例10.(2023·青海·海东市第一中学模拟预测(文))如图,在四棱锥中,平面平面,为等边三角形,,,,是棱上一点.若,求证:平面.例11.(2023·全国·高三专题练习)如图,在四棱锥中,底面是边长为的正方形,侧面底面,且,若、分别为、的中点,求证:侧面;例12.(2023·河南·濮阳一高高三阶段练习(理))如图,四边形为菱形,,将沿折起,得到三棱锥,点M,N分别为和的重心.证明:∥平面;又平面,平面,例13.(2023·全国·高三专题练习)如图,是三棱锥的高,,,E是的中点.证明:平面;【方法技巧与总结】(1)初学者可以拿一把直尺放在位置(与平齐),如图一;(2)然后把直尺平行往平面方向移动,直到直尺第一次落在平面内停止,如图二;(3)此时刚好经过点(这里熟练后可以直接凭数感直接找到点),此时直尺所在的位置就是我们要找的平行线,直尺与相交于点,连接,如图三;(4)此时长度有长有短,连接并延长刚好交于一点,刚好构成型模型(为中点,则也为中点,若为等分点,则也为对应等分点),,如图四.图一 图二 图三 图四题型三:线面平行构造之平行四边形法例14.(2023·河南开封·模拟预测(理))如图,,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,,,为圆台的母线,.证明;平面;例15.(2023·广东·大埔县虎山中学模拟预测)如图,在四棱台中,,,四边形ABCD为平行四边形,点E为棱BC的中点.求证:平面;例16.(2023·全国·高三专题练习)在如图1所示的等腰梯形中,,将它沿着两条高折叠成如图2所示的四棱锥(重合),点分别为线段的中点.证明:平面;例17.(2023·全国·模拟预测)在四棱锥中,平面,四边形是矩形,分别是的中点.求证:平面;例18.(2023·全国·高三专题练习)如图,正方形与直角梯形所在平面相互垂直,,,.求证:平面;例19.(2023·全国·高三专题练习)如图,在四棱锥P-ABCD中,,,P在以AD为直径的圆O上,平面平面PAD.设点Q是AP的中点,求证:BQ平面PCD;例20.(2023·江苏·矿大附中高三阶段练习)如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.求证:平面;例21.(2023·河南·洛宁县第一高级中学一模(文))如图,在四棱锥中,已知平面平面ABCD,,,,AE是等边的中线.证明:平面.例22.(2023·全国·高三专题练习)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).【方法技巧与总结】(1)初学者可以拿一把直尺放在位置,如图一;(2)然后把直尺平行往平面方向移动,直到直尺第一次落在平面内停止,如图二;(3)此时刚好经过点(这里熟练后可以直接凭数感直接找到点),此时直尺所在的位置就是我们要找的平行线,直尺与相交于点O,连接, 如图三;(4)此时长度相等(感官上相等即可,若感觉有长有短则考虑法一A型的平行),连接,刚好构成平行四边形型模型(为中点,O也为中点,为三角形中位线),,如图四.图一 图二 图三 图四题型四:线面平行转化为面面平行例23.(2023·全国·高三专题练习)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.求证:平面;例24.(2023·全国·高三专题练习)如图所示的几何体中,底面ABCD是等腰梯形,,平面,,且,E,F分别为,的中点.证明:面ABCD;例25.(2023·湖南·长沙一中高三阶段练习)如图、三棱柱的侧棱垂直于底面,是边长为2的正三角形,,点在线段上且,点是线段上的动点.当为多少时,直线平面?例26.(2023·全国·高三专题练习)如图,在等腰直角三角形中,分别是上的点,且分别为的中点,现将沿折起,得到四棱锥,连接 证明:平面;例27.(2023·贵州·贵阳一中高三阶段练习(理))如图,四棱锥中,平面平面,,,,,,.是中点,是上一点.是否存在点使得平面,若存在求的长.若不存在,请说明理由;例28.(2023·全国·高三专题练习)已知将圆柱沿着轴截面分割,得到如图所示的几何体,若四边形是边长为2的正方形,E,F分别是上的点,H是的中点,与交于点O,.求证:平面;例29.(2023·河北·高三专题练习)如图所示正四棱锥,,P为侧棱上的点.且,求:(1)正四棱锥的表面积;(2)侧棱上是否存在一点E,使得平面.若存在,求的值;若不存在,试说明理由.例30.(2023·全国·高三专题练习)在如图所示的圆柱中,为圆的直径,、是的两个三等分点,、、都是圆柱的母线.求证:平面;【方法技巧与总结】本法原理:已知平面平面,则平面里的任意直线均与平面平行题型五:利用线面平行的性质证明线线平行例31.(2023·福建·三模)如图,在三棱锥中,和均是边长为4的等边三角形.是棱上的点, ,过的平面与直线垂直,且平面平面.在图中画出,写出画法并说明理由;例32.(2023·全国·高三专题练习)如图所示,四棱锥的底面是直角梯形,,底面,过的平面交于,交于(与不重合).求证:;例33.(2023·山东青岛·二模)如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径,母线,M是PB的中点,四边形OBCH为正方形.设平面平面,证明:;例34.(2023·安徽·蚌埠二中模拟预测(理))正方体中,点在棱上,过点作平面的平行平面,记平面与平面的交线为,则与所成角的大小为( )A. B. C. D.例35.(2023·全国·高三专题练习)如图,己知三棱锥中,为正三角形,,D,E分别为,的中点,经过的平面与分别交于点G,F,且.求证:四边形是平行四边形;例36.(2023·全国·高三专题练习) 如图,是圆的直径,点是圆上异于的点,直线平面,分别是,的中点.记平面与平面的交线为,求证:直线平面;例37.(2023·安徽·安庆一中高三阶段练习(文))如图,四棱锥的底面是平行四边形,设平面与平面的交线为直线.证明:∥平面;例38.(2023·河北·石家庄二中模拟预测)如图,在四棱锥中,底面,底面是直角梯形,,,,是上的点.若平面,求的值;【方法技巧与总结】如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行题型六:面面平行的证明例39.(2023·全国·高三专题练习(理))如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,PA=PD,AB=AD,PA⊥PD,AD⊥CD,∠BAD=60°,M,N分别为AD,PA的中点.证明:平面BMN∥平面PCD;例40.(2023·浙江·高三专题练习)在三棱锥中,平面平面,,,过作,垂足为,点,分别是棱,的中点.求证:平面平面.例41.(2023·河南·高三阶段练习(理))如图,在四棱柱中,四边形ABCD是正方形,E,F,G分别是棱,,的中点.证明:平面平面;例42.(2023·安徽·南陵中学模拟预测(理))如图,在正方体中,E,F分别为棱的中点.求证:平面平面BDF;【方法技巧与总结】常用证明面面平行的方法是在一个平面内找到两条相交直线与另一个平面分别平行或找一条直线同时垂直于这两个平面.证明面面平行关键是找到两组相交直线分别平行.题型七:面面平行的性质例43.(2023·黑龙江·高三阶段练习(理))四棱锥的底面是边长为2的菱形,,底面,,,分别是,的中点.已知,若平面平面,求的值;例44.(2023·青海玉树·高三阶段练习(文))在长方体中,,P为的中点.已知过点的平面与平面平行,平面与直线分别相交于点M,N,请确定点M,N的位置;例45.(2023·四川·模拟预测(理))如图,在直棱柱中,点E,F分别为,BC的中点,点G是线段AF上的动点.确定点G的位置,使得平面平面,并给予证明;例46.(2023·全国·高三专题练习)如图,在直棱柱中,点E,F分别为,BC的中点,点G是线段AF上的动点.确定点G的位置,使得平面平面,并给予证明【过关测试】一、单选题1.(2023·全国·模拟预测(理))已知m、n是两条不同的直线,α、β是两个不同的平面,则下列结论一定成立的是( )A.若m⊥n,m⊥α,则n∥α B.若m∥α,α∥β,则m∥βC.若m⊥α,α⊥β,则m∥β D.若m⊥α,n⊥β,m⊥n,则α⊥β2.(2023·全国·模拟预测(理))已知长方体中,,,,分别为棱和的中点,为长方体表面上任意一点.若平面,则的最大值为( )A. B. C. D.63.(2023·云南师大附中模拟预测(理))若,是两个不同平面,,是两条不同直线,则下列4个推断中正确的是( )A.,,,B.,,C.,,,D.,,4.(2023·全国·高三专题练习(文))下列四个命题,真命题的个数为( )(1)如果一条直线垂直于一个平面内的无数条直线,则这条直线垂直于该平面;(2)过空间一定点有且只有一条直线和已知平面垂直;(3)平行于同一个平面的两条直线平行;(4)a与b为空间中的两条异面直线,点A不在直线a,b上,则过点A有且仅有一个平面与直线a,b都平行.A.0 B.1 C.2 D.35.(2023·广东广州·三模)一几何体的平面展开图如图所示,其中四边形为正方形,分别为的中点,在此几何体中,下面结论错误的是( )A.直线与直线异面B.直线与直线异面C.直线平面D.直线平面6.(2023·新疆克拉玛依·三模(文))如图,在棱长为1的正方体中,为棱的中点,为正方形内一动点(含边界),若平面,则线段长度的取值范围是( )A. B.C. D.7.(2023·全国·高三专题练习(文))已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有( )A.0条 B.1条 C.2条 D.无数条8.(2023·安徽师范大学附属中学模拟预测(理))如图,在三棱柱中,过的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则( )A. B. C. D.二、多选题9.(2023·全国·高三专题练习)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线与平面平行的是( )A. B.C. D.10.(2023·全国·高三专题练习)在正四面体A-BCD中,,点O为的重心,过点O的截面平行于AB和CD,分别交BC,BD,AD,AC于E,F,G,H,则 ( )A.四边形EFGH的周长为8B.四边形EFGH的面积为2C.直线AB和平面EFGH的距离为D.直线AC与平面EFGH所成的角为11.(2023·河北石家庄·高三阶段练习)已知m,n为异面直线,平面,平面.若直线l满足,则( )A.B.C.与相交,且交线平行于lD.与相交,且交线垂直于l12.(2023·全国·模拟预测)在正方体中,,则下列结论正确的是( )A.存在,使得B.对任意的,都有C.对任意的,都有平面D.当时,直线与平面所成角的正切值为三、填空题13.(2023·安徽省含山中学三模(文))三棱锥中,,过线段中点E作平面与直线、都平行,且分别交、、于F、G、H,则四边形的周长为_________.14.(2023·全国·高三专题练习(文))如图所示,为平行四边形所在平面外一点,为的中点,为上一点,若平面,则_______15.(2023·全国·高三专题练习)如图,已知棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别是线段AB,AD,AA1的中点,又P,Q分别在线段A1B1,A1D1上,且A1P=A1Q=x(0
相关资料
更多