2024年浙江省宁波市镇海区中兴中学中考数学一模试卷(含解析)
展开
这是一份2024年浙江省宁波市镇海区中兴中学中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.2024的倒数是( )
A. 2024B. −2024C. 12024D. −12024
2.在比例尺为1:5000000的宁波地图上,量得杭州湾大桥在地图上的距离为0.72厘米,则桥实际长度用科学记数法可表示为米( )
A. 3.6×103B. 3.6×104C. 3.6×105D. 36×104
3.下列运算,结果正确的是( )
A. a3+a3=2a3B. (a3)2=a5C. a3÷a=aD. a2=a
4.校标是一个学校的标志,也是一个学校的门面,包含着自豪与归属感,下列是镇海区其中四所学校的校标,属于中心对称的图形是( )
A. B. C. D.
5.把不等式组x−36
10.如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,则S正方形ACDE:S正方形BCIH的值等于( )
A. 5+22
B. 4
C. 5+32
D. 43
二、填空题:本题共6小题,每小题4分,共24分。
11.分解因式:2a2−8= ______.
12.学校组织科技知识大赛,8名参赛同学的得分(单位:分)如下:91,89,92,94,92,96,95,92,这组数据的众数是______分.
13.若半径为8的扇形弧长为2π,则该扇形的圆心角度数为______.
14.《算学启蒙》中记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行10天,快马几天可追上慢马?若设快马x天可追上慢马,则列出方程为______.
15.如图,4个小正方形拼成“L”型模具,其中两个顶点在y轴正坐标轴上,一个顶点在x轴负半轴上,顶点D在反比例函数y=kx(k≠0)的图象上,若S△ABC=4,则k= ______.
16.如图1,是一种购物小拉车,底部两侧装有轴承三角轮,可以在平路及楼梯上推拉物品.拉杆固定在轴上,可以绕连接点旋转,拉杆,置物板,脚架形状保持不变.图2,图3为购物车侧面示意图,拉杆OP⊥DE,DF=24cm,FG=40 33cm,⊙A,⊙B,⊙C的半径均为4cm,O为三角轮的中心,OA=OB=OC,∠AOB=∠BOC=∠AOC.如图2,当轮子⊙B,⊙C及点G都放置在水平地面HI时,D恰好与⊙A的最高点重合.此时,D的高度为20cm,则OA= ______cm;如图3,拉动OP,使轮子⊙A,⊙B在楼梯表面滚动,当OA//HI,且B,O,D三点共线时,点G与B的垂直高度差为______cm.
三、解答题:本题共8小题,共66分。解答应写出文字说明,证明过程或演算步骤。
17.(本小题6分)
(1)|1−1|+3−8+(13)−2−sin30°.
(2)先化简,再求值:a−1a−2⋅a2−4a2−2a+1−2a−1,其中a=12.
18.(本小题6分)
如图的网格中,△ABC的顶点都在格点上,每个小正方形的边长均为1.仅用无刻度的直尺在给定的网格图中分别按下列要求画图.(保留画图痕迹,画图过程中辅助线用虚线,画图结果用实线、实心点表示)
(1)请在图1中画出△ABC的高CD,计算得csA= ______.
(2)请在图2中在线段AB上找一点E,使AE=2.
19.(本小题6分)
如图,在△ABC中,D、E分别是△ABC边AB、AC上的点,已知DE//BC且DB=DE.
(1)求证:BE是△ABC的角平分线;
(2)若∠A=65°,∠C=45°,求∠AEB的度数.
20.(本小题8分)
学校为加强学生垃圾分类方面的知识普及,开设了垃圾分类臻善德育小课培训学.为了解培训效果,学校对七年级544名学生在学习前和培训后各进行一次垃圾分类知晓情况检测,两次检测项目相同,政教处依据同一标准进行问卷评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分.学校随机抽取32名学生的2次检测等级作为样本,绘制成如图的条形统计图:
(1)这32名学生在培训前得分的中位数对应等级应为______;(填“合格”、“良好”或“优秀”)
(2)求这32名学生培训后比培训前的平均分提高了多少?
(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?
21.(本小题8分)
低碳生活已是如今社会的一种潮流形式,人们的环保观念也在逐渐加深.“低碳环保,绿色出行”成为大家的生活理念,不少人选择自行车出行.某公司销售甲、乙两种型号的自行车,其中甲型自行车进货价格为每台1000元,乙型自行车进货价格为每台1200元.该公司销售3台甲型自行车和2台乙型自行车,可获利1100元,销售1台甲型自行车和2台乙型自行车,可获利700元.
(1)该公司销售一台甲型、一台乙型自行车的利润各是多少元?
(2)在销售中发现,甲型自行车按(1)中获利定价时,每天可售出20台.在原有基础上,每降价5元,可多售出1台,要使甲型自行车每天销售利润不低于3360元,求优惠幅度的范围.
22.(本小题10分)
根据以下素材,探索完成任务.
23.(本小题10分)
综合与实践
【问题情境】
如图1,小华将矩形纸片ABCD先沿对角线BD折叠,展开后再折叠,使点B落在对角线BD上,点B的对应点记为B′,折痕与边AD,BC分别交于点E,F.
【活动猜想】
(1)如图2,当点B′与点D重合时,四边形BEDF是哪种特殊的四边形?并给予证明.
【问题解决】
(2)如图1,当AB=4,AD=8,BF=3时,连结B′C,则B′C的长为______.
【深入探究】
(3)如图3,请直接写出AB与BC满足什么关系时,始终有A′B′与对角线AC平行?
24.(本小题12分)
已知:⊙O是△ABC的外接圆,连接BO并延长交AC于点D,∠CDB=3∠ABD.
(1)如图1,求证:AC=AB;
(2)如图2,点E是弧AB上一点,连接CE,AF⊥CE于点F,且∠BAF=∠ACE,求tan∠BCE的值;
(3)在(2)的条件下,若EF=2,BC=8 2,求线段AB的长.
答案和解析
1.【答案】C
【解析】解:2024的倒数是12024;
故选:C.
根据乘积是1的两数互为倒数解答即可.
本题考查了倒数,掌握倒数的定义是解答本题的关键.
2.【答案】B
【解析】解:0.72÷15000000=3600000(厘米),
3600000厘米=36000米=3.6×104米.
故选:B.
首先用0.72除以15000000,求出桥的实际长度,然后根据用科学记数法表示较大的数的方法,把桥实际长度用科学记数法表示即可.
此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|
相关试卷
这是一份2024年浙江省宁波市镇海区中考数学一模试卷,共27页。
这是一份2023年浙江省宁波市镇海区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年浙江省宁波市镇海区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。