- 数学(无锡卷)-2024年中考数学考前押题卷 试卷 2 次下载
- 数学(武汉卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(盐城卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(苏州卷)-2024年中考数学考前押题卷 试卷 1 次下载
- 数学(浙江卷)-2024年中考数学考前押题卷 试卷 1 次下载
数学(泰州卷)-2024年中考数学考前押题卷
展开第Ⅰ卷
一、选择题(本大题共6个小题,每小题3分,共18分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
第Ⅱ卷
二、填空题(本大题共10小题,每小题3分,共30分)
7.x≥-12且x≠18.4.3×10﹣89.2510.①②③
11.x<﹣1或x>312.3213.8π514.7
15.3516.(65,125)
三、解答题(本大题共10个小题,共102分.解答应写出文字说明,证明过程或演算步骤)
17.(10分)
解:(1)原式=x2﹣1﹣(x2+2x+1)
=x2﹣1﹣x2﹣2x﹣1
=﹣2x﹣2;··········································································5分
(2)去分母得:2x=3x﹣3x+3,
解得:x=32,
检验:把x=32代入得:3(x﹣1)≠0,
∴x=32是分式方程的解.································································10分
18.(8分)
解:(1)如图,△EFG即为所求(答案不唯一);···········································4分
(2)如图,菱形MNPQ即为所求(答案不唯一).··········································8分
19.(8分)
解:(1)该书店4月份的营业总额是:182﹣(30+40+25+42)=45(万元),
补全统计图如下:
·················································2分
(2)42×25%=10.5(万元),
答:5月份“党史”类书籍的营业额是10.5万元;··········································4分
(3)4月份“党史”类书籍的营业额是45×20%=9(万元),
∵10.5>9,且1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,
∴5月份“党史”类书籍的营业额最高.··················································8分
20.(8分)
解:(1)由题意知,七年级推荐了1名女生,八年级推荐了2名女生,
∴从推荐的女生中随机选一人,来自七年级的概率是13.
故答案为:13.·······································································4分
(2)列表如下:
共有9种等可能的结果,其中恰好是一男一女的结果有5种,
∴恰好是一男一女的概率为59.·······················································8分
21.(10分)
解:(1)∵y=﹣x2+2ax﹣a2﹣a+2=﹣(x﹣a)2﹣a+2,
∴抛物线y=﹣x2+2ax﹣a2﹣a+2的顶点为(a,﹣a+2),
∵抛物线的顶点在第二象限,
∴a<0-a+2>0,
解得a<0;········································································3分
(2)∵抛物线y=﹣x2+2ax﹣a2﹣a+2的顶点在反比例函数y=-8x(x<0)的图象上,
∴a(﹣a+2)=﹣8,
解得a=4或a=﹣2,
∵a<0,
∴a=﹣2,
∴顶点为(﹣2,4),
∵y1=y2,
∴点A(x1,y1),B(x2,y2)关于直线x=﹣2对称,
∴x1+x22=-2,
∴x1+x2=﹣4;········································································6分
(3)∵当1<x1<x2时,都有y2<y1<1,
∴a<1-1+2a-a2-a+2≤1或a=1-a+2=-1+2a-a2-a+2,
解得a≤0或a=1,
故a的取值范围为a≤0或a=1.·······················································10分
22.(10分)
解:如图,延长AE交CD延长线于点M,过点A作AN⊥BC于点N,则四边形AMCN是矩形,
∴NC=AM,AN=MC,
在Rt△EMD中,∠EDM=37°,
∵sin∠EDM=EMED,cs∠EDM=DMED,
∴EM=ED×sin37°≈20×0.6=12(米),
DM=ED×cs37°≈20×0.8=16(米),
∴AN=MC=CD+DM=74+16=90(米).·················································5分
由题意,在Rt△ANB中,∠BAN=42°,
∵tan∠BAN=BNAN,
∴BN=AN×tan42°≈90×0.9=81(米),
∴BC=BN+AE+EM=81+3+12=96(米),
答:大楼BC的高度约为96米.·························································10分
23.(10分)
解:(1)结论:四边形CEGF是菱形.
理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠GFE=∠FEC,
∵图形翻折后点G与点C重合,EF为折痕,
∴∠GEF=∠FEC,FG=FC,EG=GC,
∴∠GFE=∠FEG,
∴GF=GE,
∴GE=EC=CF=FG,
∴四边形CEGF为菱形;·································································5分
(2)如图2,当G与A重合时,CE的值最大,由折叠的性质得AE=CE,
∵∠B=90°,
∴Rt△CDF中,CD2=DF2+CF2,
即x2=22+(16﹣x)2,
解得,x=638,
∴DF=638.···········································································10分
24.(12分)
解:(1)设y与x的函数解析式为y=kx+b,
将(10,30)、(16,24)代入,得:10k+b=3016k+b=24,
解得:k=-1b=40,
所以y与x的函数解析式为y=﹣x+40(10≤x≤16);········································3分
(2)根据题意知W=(x﹣10)y
=(x﹣10)(﹣x+40)
=﹣x2+50x﹣400
=﹣(x﹣25)2+225,
∵a=﹣1<0,
∴当x<25时,W随x的增大而增大,
∵10≤x≤16,
∴当x=16时,W取得最大值,最大值为144;············································7分
(3)根据题意知,﹣(x﹣25)2+225=104,
∴x=14或x=36(舍去),
答:销售单价为14元.·································································12分
25.(12分)
解:(1)反比例函数y1=kx与正比例函数y2=mx的图象都是中心对称图形,
∵A(k,1),
∴点B的坐标为(﹣k,﹣1);
故答案为:(﹣k,﹣1);······························································2分
(2)解:∵点C为反比例函数y1=kx图象上一点,点C的横坐标为4k,
∴C(4k,14),
设直线BC的解析式为y=mx+n(m≠0),
∴14=4km+n-1=-km+n,
∴m=14kn=-34,
∴直线BC的解析式为y=14kx-34,······················································5分
作AN∥y轴交BC于点N,则N(k,-12),
∴AN=1+12=32,
∴S△ABC=12AN×(xC-xB)=12×32×(4k+k)=5,
解得k=43;·········································································7分
(3)由题意得P(5k,15),而B(﹣k,﹣1),
同理求得直线BP的解析式为y=15kx-45,
∵A(k,1),
∴D(k,-35),E(5k,-35),
∵四边形ADEF是正方形,
∴AD=DE,即1+35=5k-k,
解得k=25.·········································································12分
26.(14分)
(1)证明:∵∠A=∠D,∠B=∠C,
∴△ACE∽△DBE·····································································2分
(2)①∵∠CBA=∠D,∠B=∠C,
∴∠CAB+∠C=90°,
∴CD⊥AB,
又∵CD过圆心,
∴AE=BE=1,
在Rt△AEC中,tan∠CAE=CEAE=3,
∴CE=3,············································································5分
设OE=x,则OC=3﹣x=OB,
在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,
即(3﹣x)2=x2+1,
解得:x=43,
∵OG=OB,AE=BE,
∴OE是△AGB的中位线,
∴AG=2OE=83;·····································································8分
②∵BG是⊙O的直径,
∴∠BAG=90°,
∵∠BAG=∠BEO=90°,
∴OC∥AG,
∴△GAF∽△OCF,
∴FGOF=AGOC,
设AE=t,在Rt△ACE中,tan∠CAE=CEAE=x,
∴CE=tx
设OE=d,则OC=tx﹣d=OB,
在Rt△OEB中,由勾股定理得:OB2=OE2+BE2,
即(tx﹣d)2=d2+t2,
解得:d=t2x2-t22tx,OC=tx-d=t2x2+t22tx,
∴OFFG=OCAG=OC2d=x2+12x2-2,
∴y=2x2x2-1.·········································································14分1
2
3
4
5
6
B
B
D
C
B
A
女
女
男
女
(女,女)
(女,女)
(女,男)
男
(男,女)
(男,女)
(男,男)
男
(男,女)
(男,女)
(男,男)
数学(无锡卷)-2024年中考数学考前押题卷: 这是一份数学(无锡卷)-2024年中考数学考前押题卷,文件包含数学无锡卷全解全析docx、数学无锡卷参考答案及评分标准docx、数学无锡卷考试版A4docx等3份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
数学(徐州卷)-2024年中考数学考前押题卷: 这是一份数学(徐州卷)-2024年中考数学考前押题卷,文件包含数学徐州卷全解全析docx、数学徐州卷参考答案及评分标准docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
数学(南通卷)-2024年中考数学考前押题卷: 这是一份数学(南通卷)-2024年中考数学考前押题卷,文件包含数学南通卷全解全析docx、数学南通卷参考答案及评分标准docx、数学南通卷考试版A4docx等3份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。