所属成套资源:2023年北京高三二模数学分类汇编
2023年北京高三二模数学分类汇编-专题06 选择填空压轴题型:立体几何与函数数列综合(原卷版)
展开
这是一份2023年北京高三二模数学分类汇编-专题06 选择填空压轴题型:立体几何与函数数列综合(原卷版),共6页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。
一、单选题
1.(2023·北京丰台·统考二模)若某圆锥的轴截面是边长为2的正三角形,则它的体积为( )
A.B.C.D.
2.(2023·北京西城·统考二模)将边长为的正方形沿对角线折起,折起后点记为.若,则四面体的体积为( )
A.B.
C.D.
3.(2023·北京朝阳·二模)如图,在棱长为2的正方体中,P为线段的中点,Q为线段上的动点,则下列结论正确的是( )
A.存在点Q,使得B.存在点Q,使得平面
C.三棱锥的体积是定值D.存在点Q,使得PQ与AD所成的角为
4.(2023·北京海淀·统考二模)已知正方形ABCD所在平面与正方形CDEF所在平面互相垂直,且,P是对角线CE的中点,Q是对角线BD上一个动点,则P,Q两点之间距离的最小值为( )
A.1B.C.D.
5.(2023·北京朝阳·二模)设函数,若对任意的恒成立,则( )
A.B.
C.D.
6.(2023·北京朝阳·二模)已知函数是上的奇函数,当时,.若关于x的方程有且仅有两个不相等的实数解则实数m的取值范围是( )
A.B.C.D.
7.(2023·北京东城·统考二模)设,其中为自然对数的底数,则( )
A.B.
C.D.
8.(2023·北京昌平·统考二模)某市一个经济开发区的公路路线图如图所示,粗线是大公路,细线是小公路,七个公司分布在大公路两侧,有一些小公路与大公路相连.现要在大公路上设一快递中转站,中转站到各公司(沿公路走)的距离总和越小越好,则这个中转站最好设在( )
A.路口B.路口C.路口D.路口
9.(2023·北京昌平·统考二模)对于两个实数,设则“”是“函数的图象关于直线对称”的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
10.(2023·北京西城·统考二模)在坐标平面内,横、纵坐标均为整数的点称为整点.点从原点出发,在坐标平面内跳跃行进,每次跳跃的长度都是且落在整点处.则点到达点所跳跃次数的最小值是( )
A.B.
C.D.
11.(2023·北京西城·统考二模)已知数轴上两点的坐标为,现两点在数轴上同时相向运动.点的运动规律为第一秒运动个单位长度,以后每秒比前一秒多运动个单位长度;点的运动规律为每秒运动个单位长度.则点相遇时在数轴上的坐标为( )
A.B.
C.D.
二、填空题
12.(2023·北京房山·统考二模)如图所示,在正方体中,是棱上一点,平面与棱交于点.给出下面几个结论:
①四边形是平行四边形;
②四边形可能是正方形;
③存在平面与直线垂直;
④任意平面与平面垂直;
⑤平面与平面夹角余弦的最大值为.
其中所有正确结论的序号是_______.
13.(2023·北京昌平·统考二模)如图,在长方体中,,动点分别在线段和上.给出下列四个结论:
①;
②不可能是等边三角形;
③当时,;
④至少存在两组,使得三棱锥的四个面均为直角三角形.
其中所有正确结论的序号是__________.
14.(2023·北京东城·统考二模)如图,在正方体中,是的中点,平面将正方体分成体积分别为,() 的两部分,则_______
15.(2023·北京朝阳·二模)斐波那契数列又称为黄金分割数列,在现代物理、化学等领域都有应用,斐波那契数列满足,.给出下列四个结论:
①存在,使得成等差数列;
②存在,使得成等比数列;
③存在常数t,使得对任意,都有成等差数列;
④存在正整数,且,使得.
其中所有正确结论的序号是________.
16.(2023·北京东城·统考二模)定义在区间上的函数的图象是一条连续不断的曲线,在区间上单调递增,在区间上单调递减,给出下列四个结论:
①若为递增数列,则存在最大值;
②若为递增数列,则存在最小值;
③若,且存在最小值,则存在最小值;
④若,且存在最大值,则存在最大值.
其中所有错误结论的序号有_______.
17.(2023·北京西城·统考二模)已知直线和曲线,给出下列四个结论:
①存在实数和,使直线和曲线没有交点;
②存在实数,对任意实数,直线和曲线恰有个交点;
③存在实数,对任意实数,直线和曲线不会恰有个交点;
④对任意实数和,直线和曲线不会恰有个交点.
其中所有正确结论的序号是____.
三、双空题
18.(2023·北京海淀·统考二模)设函数,
①若,则不等式的解集为___________;
②若,且不等式的解集中恰有一个正整数,则的取值范围是___________.
相关试卷
这是一份2023年北京高三二模数学分类汇编-专题05 选择填空中档题型:圆锥曲线与圆的方程(原卷版),共3页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。
这是一份2023年北京高三二模数学分类汇编-专题04 选择填空中档题型:解三角形、向量与直线方程(原卷版),共3页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。
这是一份2023年北京高三二模数学分类汇编-专题03 选择填空中档题型:排列组合、二项式定理与数列(解析版),共6页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。