2024年中考数学模拟预测题五(原卷版+解析版)
展开
这是一份2024年中考数学模拟预测题五(原卷版+解析版),文件包含2024年中考数学模拟预测题五原卷版docx、2024年中考数学模拟预测题五解析版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
A. B. C. D.
【答案】A
【解析】
【详解】试题解析:
故选A.
(2023▪巴中)
2. 某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是( )
A. 传B. 承C. 文D. 化
【答案】D
【解析】
【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.
【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,
∴在此正方体上与“红”字相对的面上的汉字是“化”.
故选:D.
【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.
(2023•枣庄)
3. 随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长,其中159万用科学记数法表示为( )
A. B. C. D.
【答案】A
【解析】
【分析】根据科学记数法的表示方法进行表示即可.
【详解】解:159万;
故选A.
【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:,n为整数,是解题的关键.
(2023•聊城)
4. 若一元二次方程有实数解,则m的取值范围是( )
A. B. C. 且D. 且
【答案】D
【解析】
【分析】由于关于的一元二次方程有实数根,根据一元二次方程根与系数的关系可知,且,据此列不等式求解即可.
【详解】解:由题意得,,且,
解得,,且.
故选:D.
【点睛】本题考查了一元二次方程的根的判别式与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当时,一元二次方程有两个不相等的实数根;当时,一元二次方程有两个相等的实数根;当时,一元二次方程没有实数根.
(2023•鄂州)
5. 如图,直线,于点E.若,则的度数是( )
A. B. C. D.
【答案】B
【解析】
【分析】延长,与交于点,根据平行线的性质,求出的度数,再直角三角形的两锐角互余即可求出.
【详解】解:延长,与交于点,
∵,,
∴,
∵,
∴,
故选:B.
【点睛】本题考查平行线的性质和直角三角形的性质,正确作出辅助线和正确利用平行线的性质是解题的关键.
(2023•湖北)
6. 如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【解析】
【分析】根据网格的特点作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,先根据勾股定理的逆定理证明是直角三角形,从而可得,然后根据,进行计算即可解答.
【详解】解:如图:作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,
由题意得:,,,
∴,
∴是直角三角形,
∴,
∵,
∴
,
故选:D.
【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
(2023▪连云港)
7. 如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点,则点落在阴影部分的概率为( )
A. B. C. D.
【答案】B
【解析】
【分析】设小正方形的边长为1,则大正方形的边长为,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.
【详解】解:设小正方形的边长为1,则大正方形的边长为,
∴总面积为,
阴影部分的面积为,
∴点落在阴影部分的概率为,
故选:B.
【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.
(2023•遂宁)
8. 若关于x的不等式组的解集为,则a的取值范围是( )
A. B. C. D.
【答案】D
【解析】
【分析】分别求出各不等式的解集,再根据不等式组的解集是求出a的取值范围即可.
【详解】解:
解不等式①得:,
解不等式②得:,
∵关于的不等式组的解集为,
∴,
故选:D.
【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
(2022•丽水)
9. 如图,已知菱形的边长为4,E是的中点,平分交于点F, 交于点G,若,则的长是( )
A. 3B. C. D.
【答案】B
【解析】
【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cs∠AGP=,即可得到FG的长;
【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,
由题意可知,AB=BC=4,E是BC的中点,
∴BE=2,
又∵,
∴BH=1,即H是BE的中点,
∴AB=AE=4,
又∵AF是∠DAE的角平分线,,
∴∠FAG=∠AFG,即AG=FG,
又∵,,
∴PF=AD=4,
设FG=x,则AG=x,EG=PG=4-x,
∵,
∴∠AGP=∠AEB=∠B,
∴cs∠AGP===,
解得x=;
故选B.
【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.
(2023•齐齐哈尔)
10. 如图,二次函数图像的一部分与x轴的一个交点坐标为,对称轴为直线,结合图像给出下列结论:
①;②;③;
④关于x的一元二次方程有两个不相等的实数根;
⑤若点,均在该二次函数图像上,则.其中正确结论的个数是( )
A. 4B. 3C. 2D. 1
【答案】B
【解析】
【分析】根据抛物线的对称轴、开口方向、与y轴的交点确定a、b、c的正负,即可判定①和②;将点代入抛物线解析式并结合即可判定③;运用根的判别式并结合a、c的正负,判定判别式是否大于零即可判定④;判定点,的对称轴为,然后根据抛物线的对称性即可判定⑤.
【详解】解:抛物线开口向上,与y轴交于负半轴,
,
∵抛物线的对称轴为直线,
∴,即,即②错误;
∴,即①正确,
二次函数图像的一部分与x轴的一个交点坐标为
,即,故③正确;
∵关于x的一元二次方程,,,
∴,,
∴无法判断的正负,即无法确定关于x的一元二次方程的根的情况,故④错误;
∵
∴点,关于直线对称
∵点,均在该二次函数图像上,
∴,即⑤正确;
综上,正确的为①③⑤,共3个
故选:B.
【点睛】本题考查了二次函数的的性质及图像与系数的关系,能够从图像中准确的获取信息是解题的关键.
(21▪乌兰察布)
11. 因式分解:_______.
【答案】
【解析】
【分析】首先将公因式a提出来,再根据完全平方公式进行因式分解即可.
【详解】,
故填:.
【点睛】本题考查提公因式因式分解,公式法因式分解,解题关键是掌握因式分解的方法:提公因式因式分解和公式法因式分解.
(2023▪南充)
12. 关于x,y的方程组的解满足,则的值是_______.
【答案】8
【解析】
【分析】本题考查了根据二元一次方程解的情况求参数,同底数幂除法,幂的乘方,熟练求出m、n的关系是解题的关键.
将方程组中两个方程相减,得到,即,由求出,再根据幂的乘方与同底数幂的除法即可求解.
【详解】解:,
,得,
∴,
∵,
∴,
∴.
故答案为:8
(2023•永州)
13. 若关于x的分式方程(m为常数)有增根,则增根是_______.
【答案】
【解析】
【分析】根据使分式的分母为零的未知数的值,是方程的增根,计算即可.
【详解】∵关于x的分式方程(m为常数)有增根,
∴,
解得,
故答案为:.
【点睛】本题考查了分式方程的解法,增根的理解,熟练掌握分式方程的解法是解题的关键.
(2023•绥化)
14. 如图,在平面直角坐标系中,与的相似比为,点A是位似中心,已知点,点,.则点的坐标为_______.(结果用含a,b的式子表示)
【答案】##
【解析】
【分析】本题考查了求位似图形的坐标,熟练掌握位似图形的性质是解题的关键.
分别过点C,分别作x轴的垂线,,垂足分别为D,,根据题意得出,,,则得出,,即可求解.
【详解】解:如图,分别过点C,分别作x轴的垂线,,垂足分别为D,,
∵,,
∴,,,
∵与的相似比为,点A是位似中心,
∴,,
∴,
∵点在第三象限,
∴.
故答案为:
(2023•营口)
15. 如图,在中,以A为圆心,长为半径作弧,交于C,D两点,分别以点C和点D为圆心,大于长为半径作弧,两弧交于点P,作直线,交于点E,若,,则______.
【答案】4
【解析】
【分析】利用圆的性质得出垂直平分和,运用勾股定理便可解决问题.
【详解】解:根据题意可知,以点C和点D为圆心,大于长为半径作弧,两弧交于点P,
∴垂直平分,即,
∴,
又∵在中,以A为圆心,长为半径作弧,交于C,D两点,其中,
∴,
在中,,
故答案为:4.
【点睛】本题主要考查圆和三角形的相关性质,掌握相关知识点是解题的关键.
(21▪怀化)
16. 观察等式:,,,……,已知按一定规律排列的一组数:,,,……,,若,用含的代数式表示这组数的和是___________.
【答案】
【解析】
【分析】根据规律将,,,……,用含的代数式表示,再计算的和,即可计算的和.
【详解】由题意规律可得:.
∵
∴,
∵,
∴.
.
.
……
∴.
故.
令
②-①,得
∴=
故答案为:.
【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.
(2023•广元)
17. 先化简,再求值:,其中,.
【答案】;
【解析】
【分析】先根据分式的加减计算括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后将字母的值代入求解.
【详解】解:
,
当,时,
原式.
【点睛】本题考查了分式化简求值,二次根式的混合运算,解题关键是熟练运用分式运算法则进行求解.
(2023•扬州)
18. 解不等式组并把它的解集在数轴上表示出来.
【答案】,数轴表示见解析.
【解析】
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【详解】解:
解不等式①得·,
解不等式②,得:,
把不等式①和②的解集在数轴上表示出来:
则不等式组的解集为:
.
【点睛】本题考查的是解一元一次不等式组,在数轴上表示不等式的解集,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
(2023•济宁)
19. 某学校为扎实推进劳动教育,把学生参与劳动教育情况纳入积分考核.学校随机抽取了部分学生的劳动积分(积分用x表示)进行调查,整理得到如下不完整的统计表和扇形统计图.
请根据以上图表信息,解答下列问题:
(1)统计表中_________,C等级对应扇形的圆心角的度数为_________;
(2)学校规定劳动积分大于等于80的学生为“劳动之星”.若该学校共有学生2000人,请估计该学校“劳动之星”大约有多少人;
(3)A等级中有两名男同学和两名女同学,学校从A等级中随机选取2人进行经验分享,请用列表法或画树状图法,求恰好抽取一名男同学和一名女同学的概率.
【答案】(1)15,
(2)该学校“劳动之星”大约有760人
(3)
【解析】
【分析】(1)根据统计图可得抽取学生的总人数为50人,然后可得m的值,进而问题可求解;
(2)根据题意易知大于等于80的学生所占比,然后问题可求解;
(3)根据列表法可进行求解概率.
【小问1详解】
解:由统计图可知:D等级的人数有8人,所占比为,
∴抽取学生的总人数为(人),
∴,C等级对应扇形的圆心角的度数为;
故答案为15,;
【小问2详解】
解:由题意得:
(人),
答:该学校“劳动之星”大约有760人
【小问3详解】
解:由题意可列表如下:
从A等级两名男同学和两名女同学中随机选取2人进行经验分享,共有12种情况,恰好抽取一名男同学和一名女同学共有8种情况,所以抽取一名男同学和一名女同学的概率为.
【点睛】本题主要考查扇形统计图与统计表、概率,熟练掌握扇形统计图及利用列表法求解概率是解题的关键.
(2023•乐山)
20. 如图,一次函数的图象与反比例函数的图象交于点,与x轴交于点B, 与y轴交于点.
(1)求m值和一次函数的表达式;
(2)已知P为反比例函数图象上的一点,,求点P的坐标.
【答案】(1)
(2)或
【解析】
【分析】(1)先把点A坐标代入反比例函数解析式求出m的值,进而求出点A的坐标,再把点A和点C的坐标代入一次函数解析式中求出一次函数解析式即可;
(2)先求出,,过点A作轴于点H,过点P作轴于点D,如图所示,根据可得,求出,则点P的纵坐标为2或,由此即可得到答案.
【小问1详解】
解:点在反比例函数的图象上,
,
,
,
又点,都在一次函数的图象上,
,
解得,
一次函数的解析式为.
【小问2详解】
解:对于,当时,,
∴,
,
∵,
过点A作轴于点H,过点P作轴于点D,如图所示.
,
.
,
解得.
点P的纵坐标为2或.
将代入得,
将代入得,
∴点或.
【点睛】本题主要考查了一次函数与反比例函数综合,利用数形结合的思想求解是解题的关键.
(2023•天津)
21. 综合与实践活动中,要利用测角仪测量塔的高度.
如图,塔前有一座高为的观景台,已知,点E,C,A在同一条水平直线上.
某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为.
(1)求的长;
(2)设塔的高度为h(单位:m).
①用含有h的式子表示线段的长(结果保留根号);
②求塔的高度(取0.5,取1.7,结果取整数).
【答案】(1)
(2)①;②
【解析】
【分析】(1)根据含30度角的直角三角形的性质求解即可;
(2)①分别在和中,利用锐角三角函数定义求得,,进而可求解;
②过点作,垂足为.可证明四边形是矩形,得到,.在中,利用锐角三角函数定义得到,然后求解即可.
【小问1详解】
解:在中,,
∴.
即的长为.
【小问2详解】
解:①在中,,
∴.
在中,由,,,
则
∴.
即的长为.
②如图,过点作,垂足为.
根据题意,,
∴四边形是矩形.
∴,.
可得.
在中,,,
∴.即.
∴.
答:塔的高度约为.
【点睛】本题考查解直角三角形的应用,涉及含30度角的直角三角形的性质、矩形判定与性质、锐角三角函数,理解题意,掌握作辅助线构造直角三角形解决问题是解答的关键.
(2023•通辽)
22. 如图,为的直径,D,E是上的两点,延长至点C,连接,.
(1)求证:;
(2)求证:是的切线;
(3)若,求的半径.
【答案】(1)见解析 (2)见解析
(3)的半径为.
【解析】
【分析】(1)利用两角对应相等两个三角形相似,得出结论;
(2)连接,由圆周角定理得出,证出,由切线的判定可得出结论;
(3)由相似三角形的性质得出,由比例线段求出和的长,可求出的长,则可得出答案.
【小问1详解】
证明:∵,,
∴;
【小问2详解】
证明:连接,
∵为的直径,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵是的半径,
∴是的切线;
【小问3详解】
解:∵,,,
∴,
∵,
∴,
∵,
∴,,
∴.
∴的半径为.
【点睛】本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.
(2023•兰州)
23. 如图,矩形的对角线与相交于点O,,直线是线段的垂直平分线,分别交于点F,G,连接.
(1)判断四边形的形状,并说明理由;
(2)当时,求的长.
【答案】(1)四边形是菱形,理由见解析
(2).
【解析】
【分析】(1)证明和是等边三角形,即可推出四边形是菱形;
(2)利用含30度角的直角三角形的性质以及勾股定理求得和的长,利用菱形的性质得到,在中,解直角三角形求得的长,据此求解即可.
【小问1详解】
证明:四边形是菱形,理由如下,
∵矩形的对角线与相交于点O,
∴,
∵直线是线段的垂直平分线,
∴,,
∴,即是等边三角形,
∴,,
∵,
∴,
∴是等边三角形,
∴,
∴四边形是菱形;
【小问2详解】
解:∵直线是线段的垂直平分线,且,
∴,,
由(1)得四边形是菱形,
∴,
在中,,
∴,
∴.
【点睛】本题考查了菱形的判定和性质,等边三角形的判定与性质,解直角三角形,线段垂直平分线的性质,解答本题的关键是明确题意,找出所求问题需要的条件.
24. 某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
【答案】(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大
【解析】
【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;
(2)设每千克水果售价元,根据题意列方程解答即可;
(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.
【详解】解:当售价为元/千克时,每月销售量为千克.
设每千克水果售价为元,由题意,得
即
整理,得
配方,得
解得
当月销售利润为元时,每千克水果售价为元或元;
设月销售利润为元,每千克水果售价为元,
由题意,得
即
配方,得
,
当时,有最大值,
当该优质水果每千克售价为元时,获得的月利润最大.
【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算.
(2023•黄冈)
25. 【问题呈现】
和都是直角三角形,,连接,,探究,的位置关系.
(1)如图1,当时,直接写出,的位置关系:____________;
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.
【答案】(1)
(2)成立;理由见解析
(3)或
【解析】
分析】(1)根据,得出,,证明,得出,根据,求出,即可证明结论;
(2)证明,得出,根据,求出,即可证明结论;
(3)分两种情况,当点E在线段上时,当点D在线段上时,分别画出图形,根据勾股定理求出结果即可.
【小问1详解】
解:∵,
∴,,
∵,
∴,
∴,
∴,
∴,
∵,
,
∴,
∴;
故答案为:.
【小问2详解】
解:成立;理由如下:
∵,
∴,
∴,
∵,
∴,
∴,
∵,
,
∴,
∴;
【小问3详解】
解:当点E在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
当点D在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
综上分析可知,或.
【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.
(2023•常德)
26. 如图,二次函数的图象与x轴交于,两点,与y轴交于点C,顶点为D.O为坐标原点,.
(1)求二次函数的表达式;
(2)求四边形的面积;
(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.
【答案】(1)
(2)30 (3)
【解析】
【分析】(1)用两点式设出二次函数的解析式,然后求得C点的坐标,并将其代入二次函数的解析式,求得a的值,再将a代入解析式中即可.
(2)先将二次函数变形为顶点式,求得顶点坐标,然后利用矩形、三角形的面积公式即可求得答案.
(3)根据各点的坐标的关系及同角三角函数相等的结论可以求得相关联的函数解析式,最后联立一次函数与二次函数的解析式,求得点P的坐标.
【小问1详解】
∵二次函数的图象与轴交于两点.
∴设二次函数的表达式为
∵,
∴,即的坐标为
则,得
∴二次函数的表达式为;
【小问2详解】
∴顶点的坐标为
过作于,作于,
四边形的面积
;
【小问3详解】
如图,是抛物线上的一点,且在第一象限,当时,
连接,过作交于,过作于,
∵,则为等腰直角三角形,.
由勾股定理得:,
∵,
∴,
即,
∴
由,得,
∴.
∴等腰直角三角形
∴
∴的坐标为
所以过的直线的解析式为
令
解得,或
所以直线与抛物线的两个交点为
即所求的坐标为
【点睛】本题考查了一次函数、二次函数的性质以及与坐标系几何图形的综合证明计算问题,解题的关键是将所学的知识灵活运用.
等级
劳动积分
人数
A
4
B
m
C
20
D
8
E
3
男1
男2
女1
女2
男1
/
男1男2
男1女1
男1女2
男2
男1男2
/
男2女1
男2女2
女1
男1女1
男2女1
/
女1女2
女2
男1女2
男2女2
女1女2
/
相关试卷
这是一份2024年河南省郑州市中考数学模拟预测题(一)(原卷版+解析版),文件包含2024年河南省郑州市中考数学模拟预测题一原卷版docx、2024年河南省郑州市中考数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2024年河南省中考模拟数学模拟预测题(原卷版+解析版),文件包含2024年河南省中考模拟数学模拟预测题原卷版docx、2024年河南省中考模拟数学模拟预测题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2024年吉林省中考数学模拟预测题(一)(原卷版+解析版),文件包含2024年吉林省中考数学模拟预测题一原卷版docx、2024年吉林省中考数学模拟预测题一解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。