海南省文昌中学2023-2024学年高一下学期第一次月考数学试题(Word版附答案)
展开这是一份海南省文昌中学2023-2024学年高一下学期第一次月考数学试题(Word版附答案),共8页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
(时间:120分钟 满分:150分)
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡的相应位置上。
1.设集合,则( )
A.B.
C. D.
2.已知,,若与共线,则( )
A.B.4C.9D.
3.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
4.是平面内不共线两向量,已知,若三点共线,则的值是( )
A.2 B.-3 C.-2 D.3
5.已知偶函数f(x)=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(ωx+φ-\f(π,6)))eq \b\lc\(\rc\)(\a\vs4\al\c1(ω>0,\f(π,2)<φ<π))的图象的相邻两条对称轴间的距离为eq \f(π,2),则feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,8)))=( )
A.eq \f(\r(2),2) B.-eq \r(2) C.-eq \r(3) D.eq \r(2)
6.将函数y=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,5)))的图象向右平移eq \f(π,10)个单位长度,所得图象对应的函数( )
A.在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3π,4),\f(5π,4)))上单调递增 B.在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3π,4),π))上单调递减
C.在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(5π,4),\f(3π,2)))上单调递增 D.在区间eq \b\lc\[\rc\](\a\vs4\al\c1(\f(3π,2),2π))上单调递减
图1 图2
7.扇子最早称“翣”,其功能并不是纳凉,而是礼仪器具,后用于纳凉、娱乐、欣赏等。扇文化是中国传统文化的重要门类,扇子的美学也随之融人到建筑等艺术审美之中。图1为一古代扇形窗子,此窗子所在扇形的半径(图2),圆心角为,且为的中点,则该扇形窗子的面积为( )
A.
B.
C.
D.
8.如图所示,正方形的边长为2,点,,分别是边,,的中点,点P是线段上的动点,则的最小值为( )
A.48
B.
C.3
D.
二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得6分,部分选对得3分或者2分,有选错得0分。请将答案填写在答题卡相应的位置上。
9.下列说法正确的是( )
A.对任意向量,,都有
B.对任意非零向量,,都有
C.若向量,满足,则
D.若非零向量,满足,则
10.已知函数,下列说法正确的是( )
A.函数的周期为
B.是函数的一个对称中心
C.是函数的一个周期
D.不等式的解集
11.下列命题为真命题的是( )
A.在△ABC中,若,则△ABC为锐角三角形
B.若P为△ABC 的垂心,,则
C.△ABC是边长为2的等边三角形,为平面ABC内一点,则的最小值为
D.O为△ABC内部一点,,则△OAB, △OAC, 的面积比为
三、填空题:本题共3小题,每小题5分,共15分。请将答案填写在答题卡相应位置上。
12.若,则 .
13.已知向量,. 则在上的投影向量的坐标为 .
14.如图,在平面斜坐标系中,,平面上任意一点P关于斜坐标系的斜坐标这样定义:若(其中,分别是轴,
轴正方向的单位向量),则P点的斜坐标为,向量
的斜坐标为,,,则△
的面积为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。请将答案填写在答题卡相应的位置上。
15.(本小题满分13分)已知, ,的夹角为,
(1)求的值;
(2)当为何值时,.
16.(本小题满分15分)已知向量=(sinθ,csθ-2sinθ),=(1,2).
(1)若∥,求 eq \f(sinθ·csθ,1+3cs2θ) 的值;
(2)若||=||,0<θ<π,求θ的值.
17.(本小题满分15分)已知在△ABC中,是边的中点,且,设 与交于点.记,.
(1)用,表示向量,;
(2)若,且,求向量和的
夹角的余弦值.
18.(本小题满分17分)已知向量,函数图象相邻两条对称轴之间的距离为.
(1)求的解析式;
(2)若且,求的值.
19.(本小题满分17分)已知函数的部分图象如图所示.
(1)求函数的解析式:
(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象.
① 当时,求函数的值域;
② 若方程在上有三个
不相等的实数根,
求的值.
2023—2024学年度第二学期高一第一次月考答案
数 学
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项符合题目要求,请将答案填写在答题卡的相应位置上。
二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项符合题目要求。全部选对得6分,部分选对得3分,有选错得0分。请将答案填写在答题卡相应的位置上。
三、填空题:本题共3小题,每小题5分,共15分。请将答案填写在答题卡相应位置上。
12. 13. 14.
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。请将答案填写在答题卡相应的位置上。
15.解:(1)因为, ,的夹角为,
所以. ……………2分
所以 ……5分
(2)由(1)知,,,
因为,
所以,……………7分
即,……………9分
所以,解得.
所以当时, ……………13分
16.解:(1)因为∥,所以2sinθ=csθ-2sinθ,……………2分
于是4sinθ=csθ;……………3分
当csθ=0时,sinθ=0,与sin2θ+cs2θ=1矛盾,……………4分
所以csθ≠0,故tanθ=eq \f(1,4),……………5分
所以eq \f(sinθ·csθ,1+3cs2θ)=eq \f(sinθ·csθ,sin2θ+4cs2θ)=eq \f(tanθ,tan2θ+4)=eq \f(4,65)……………7分
(2)由||=||知,sin2θ+(csθ-2sinθ)2=5,……………9分
即1-4sinθcsθ+4sin2θ=5, ……………10分
从而-2sin2θ+2(1-cs2θ)=4,即sin2θ+cs2θ=-1,
于是sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ+\f(π,4)))=-eq \f(\r(2),2), ……………12分
又由0<θ<π知,eq \f(π,4)<2θ+eq \f(π,4)
17.解:(1)……………2分
………4分
……………6分
(2)∵三点共线,由得,……………8分
,即, ……………10分
∴,……………12分
∴,∴的余弦值为.……………15分
18.解:(1)由题知,……………2分
……4分
又函数相邻两条对称轴之间的距离为. 即, …………5分
则, …………6分
(2)由题知,,……………7分
则,又,则, …8分
当时,,……………10分
而,……………11分
因此,此时……………13分
则
……………15分
19.解:(1)由图示得:,……………2分
又,所以,……………3分
所以,所以,……………4分
又因为过点,所以, ……5分
即,
所以,解得,
又,所以,
所以;……………6分
(2)①由已知得,
当时,……………7分
所以,所以, ……8分
所以,
所以函数的值域为;……………9分
②当时,,
令,则, …………10分
令,则函数的图象如下图所示,
且,
,
,……11分
由图象得有三个不同的实数根,
则,,
所以,即,……13分
所以,
所以,
故. ……………15分
题号
1
2
3
4
5
6
7
8
答案
C
A
D
A
B
A
B
D
题号
9
10
11
答案
AC
ACD
BCD
相关试卷
这是一份海南省四校(海南中学、海口一中、文昌中学、嘉积中学)2024届高三下学期一模数学试题(Word版附答案),共11页。试卷主要包含了已知直线的倾斜角为,则,已知函数,则下列说法正确的是等内容,欢迎下载使用。
这是一份海南省海口市海南中学2023-2024学年高一下学期3月月考数学试题(Word版附答案),文件包含海南省海南中学2023-2024高一第二学期3月月考-数学答案pdf、海南省海南中学2023-2024高一第二学期3月月考-数学试卷docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份2023-2024学年海南省文昌市文昌中学、华迈实验中学高二上学期期中段考数学试题含答案,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。