- 专题13 一网打尽外接球、内切球与棱切球问题+(练习)-2024年高考数学二轮复习讲练测(新教材新高考) 试卷 1 次下载
- 专题13 一网打尽外接球、内切球与棱切球问题(14大核心考点)(课件)-2024年高考数学二轮复习课件(新教材新高考) 课件 1 次下载
- 专题14 立体几何常见压轴小题全归纳(练习)-2024年高考数学二轮复习讲练测(新教材新高考) 试卷 1 次下载
- 专题14 立体几何常见压轴小题全归纳(9大核心考点)(课件)-2024年高考数学二轮复习课件(新教材新高考) 课件 1 次下载
- 专题15 立体几何解答题全归类(9大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考) 试卷 1 次下载
专题14 立体几何常见压轴小题全归纳(9大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考)
展开一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题14 立体几何常见压轴小题全归纳
【目录】
TOC \ "1-3" \h \z \u \l "_Tc154603193" PAGEREF _Tc154603193 \h 2
\l "_Tc154603194" 3
\l "_Tc154603195" PAGEREF _Tc154603195 \h 3
\l "_Tc154603196" PAGEREF _Tc154603196 \h 5
\l "_Tc154603197" PAGEREF _Tc154603197 \h 11
\l "_Tc154603198" 考点一:球与截面面积问题 PAGEREF _Tc154603198 \h 11
\l "_Tc154603199" 考点二:体积、面积、周长、角度、距离定值问题 PAGEREF _Tc154603199 \h 13
\l "_Tc154603200" 考点三:体积、面积、周长、距离最值与范围问题 PAGEREF _Tc154603200 \h 20
\l "_Tc154603201" 考点四:立体几何中的交线问题 PAGEREF _Tc154603201 \h 23
\l "_Tc154603202" 考点五:空间线段以及线段之和最值问题 PAGEREF _Tc154603202 \h 27
\l "_Tc154603203" 考点六:空间角问题 PAGEREF _Tc154603203 \h 30
\l "_Tc154603204" 考点七:轨迹问题 PAGEREF _Tc154603204 \h 35
\l "_Tc154603205" 考点八:以立体几何为载体的情境题 PAGEREF _Tc154603205 \h 39
\l "_Tc154603206" 考点九:翻折问题 PAGEREF _Tc154603206 \h 41
高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.
1、几类空间几何体表面积的求法
(1)多面体:其表面积是各个面的面积之和.
(2)旋转体:其表面积等于侧面面积与底面面积的和.
(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.
2、几类空间几何体体积的求法
(1)对于规则几何体,可直接利用公式计算.
(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,
有时可采用等体积转换法求解.
(3)锥体体积公式为,在求解锥体体积时,不能漏掉
3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆
锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.
4、球的截面问题
球的截面的性质:
①球的任何截面是圆面;
②球心和截面(不过球心)圆心的连线垂直于截面;
③球心到截面的距离与球的半径及截面的半径的关系为.
注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.
5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.
6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模(为平面的斜线与平面内任意一条直线所成的角,为该斜线与该平面所成的角,为该斜线在平面上的射影与直线所成的角).
7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.
8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.
9、以立体几何为载体的情境题大致有三类:
(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;
(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;
(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.
10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.
1.(2023•天津)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为
A.B.C.D.
【答案】
【解析】在三棱锥中,线段上的点满足,线段上的点满足,
所以,
设到平面的距离,到平面的距离,则,
则三棱锥的体积为.
故三棱锥和三棱锥的体积之比为.
故选:.
2.(2023•乙卷)已知为等腰直角三角形,为斜边,为等边三角形,若二面角为,则直线与平面所成角的正切值为
A.B.C.D.
【答案】
【解析】如图,取的中点,连接,,
则根据题意易得,,
二面角的平面角为,
,,且,
平面,又平面,
平面平面,
在平面内的射影为,
直线与平面所成角为,
过作垂直所在直线,垂足点为,
设等腰直角三角形的斜边长为2,
则可易得,,又,
,,,
.
故选:.
3.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为
A.B.C.D.
【答案】
【解析】如图,设球的半径为,由题意,,
可得,则球的直径为4,
两个圆锥的高之比为,,,
由直角三角形中的射影定理可得:,即.
这两个圆锥的体积之和为.
故选:.
4.(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为
A.B.C.D.
【答案】
【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,截此正方体所得截面面积的最大,
此时正六边形的边长,
截此正方体所得截面最大值为:.
故选:.
5.(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A.B.C.D.
【答案】
【解析】设圆柱的底面直径为,则高为,
圆柱的上、下底面的中心分别为,,
过直线的平面截该圆柱所得的截面是面积为8的正方形,
可得:,解得,
则该圆柱的表面积为:.
故选:.
6.(多选题)(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:的正方体容器(容器壁厚度忽略不计)内的有
A.直径为的球体
B.所有棱长均为的四面体
C.底面直径为,高为的圆柱体
D.底面直径为,高为的圆柱体
【答案】
【解析】对于,棱长为1的正方体内切球的直径为,选项正确;
对于,如图,
正方体内部最大的正四面体的棱长为,选项正确;
对于,棱长为1的正方体的体对角线为,选项错误;
对于,(法一)如图,六边形为正六边形,,,,,,为棱的中点,
高为0.01米可忽略不计,看作直径为1.2米的平面圆,
六边形棱长为米,,
所以米,故六边形内切圆直径为米,
而,选项正确.
(法二)因为,可知底面正方形不能包含圆柱的底面圆,
如图,
过的中点作,设,
可知,
则,即,解得,
且,即,
故以为轴可能对称放置底面直径为的圆柱,
若底面直径为的圆柱与正方体的上下底面均相切,
设圆柱的底面圆心为,与正方体的下底面的切点为,
可知,,,
则,
即,解得,
根据对称性可知圆柱的高为,
所以能够被整体放入正方体内,故熏香正确.
故选:.
7.(2023•甲卷)在正方体中,,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是 .
【答案】,.
【解析】设球的半径为,
当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,
若半径变得更大,球会包含正方体,导致球面和棱没有交点,
正方体的外接球直径为体对角线长,
即,,故,
分别取侧枝,,,的中点,,,,
则四边形是边长为4的正方形,且为正方形的对角线交点,
连接,则,
当球的一个大圆恰好是四边形的外接圆,球的半径最小,
即的最小值为,
综上,球的半径的取值范围是,.
故答案为:,.
8.(2021•上海)已知圆柱的底面圆半径为1,高为2,为上底面圆的一条直径,是下底面圆周上的一个动点,则的面积的取值范围为 .
【答案】
【解析】如图1,上底面圆心记为,下底面圆心记为,
连接,过点作,垂足为点,
则,
根据题意,为定值2,所以的大小随着的长短变化而变化,
如图2所示,当点与点重合时,,
此时取得最大值为;
如图3所示,当点与点重合,取最小值2,
此时取得最小值为.
综上所述,的取值范围为.
故答案为:.
考点一:球与截面面积问题
球的截面问题
球的截面的性质:
①球的任何截面是圆面;
②球心和截面(不过球心)圆心的连线垂直于截面;
③球心到截面的距离与球的半径及截面的半径的关系为.
例1.(2023·全国·模拟预测)球缺是指一个球被平面截下的部分,截面为球缺的底面,垂直于截面的直径被截面截得的线段长为球缺的高,球缺曲面部分的面积(球冠面积)(为球的半径,为球缺的高).已知正三棱柱的顶点都在球的表面上,球的表面积为,该正三棱柱的体积为,若的边长为整数,则球被该正三棱柱上、下底面所在平面截掉两个球缺后剩余部分的表面积为( )
A.B.C.D.
【答案】D
【解析】设球的半径为,则,得.设正三棱柱的高为,底面边长为,则,(提示:根据正三棱柱和球的结构特征建立方程组)
得,则球被截掉的两个球缺的高均为1,每个球冠的面积为,又外接圆的半径为,(提示:正弦定理的应用)
故所求表面积为.
故选:D
例2.(2023·全国·模拟预测)球缺是指一个球被平面截下的一部分,截面为球缺的底面,垂直于截面的直径被平面截下的线段长为球缺的高,球缺曲面部分的面积(R为球缺所在球的半径,H为球缺的高).已知正三棱柱的顶点都在球O的表面上,球O的表面积为,该正三棱柱的体积为,若的边长为正整数,则球O被三棱柱的上、下底面截掉两个球缺后剩余部分的表面积为( )
A.B.C.D.
【答案】D
【解析】设球O的半径为R,则,得,
设正三棱柱的高为h,底面边长为a,
则,得,.
易知:球O被三棱柱的上、下底面截掉的两个球缺相同,且高均为1,
则球缺曲面部分的面积为,又外接圆的半径为,
所以所求表面积为.
故选:D
例3.(2023·江西景德镇·统考三模)某地举办数学建模大赛,本次大赛的冠军奖杯由一个铜球和一个托盘组成,如图①,已知球的表面积为,托盘由边长为8的等边三角形铜片沿各边中点的连线垂直向上折叠形成,即面,面,面都与面垂直,如图②,则经过三个顶点A,B,C的球的截面圆的面积为( )
A.B.C.D.
【答案】B
【解析】设三点在底面上的射影分别为,
因为面,面,面都与面垂直,
所以是三边中点,
所以与全等,且所在平面互相平行,
所以经过三个顶点的球的截面圆与的外接圆相同,
由题意,,
所以的外接圆的半径为,
则经过三个顶点的球的截面圆的面积为.
故选:B.
考点二:体积、面积、周长、角度、距离定值问题
几类空间几何体体积的求法
(1)对于规则几何体,可直接利用公式计算.
(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,
有时可采用等体积转换法求解.
(3)锥体体积公式为,在求解锥体体积时,不能漏掉
例4.(2023·浙江省江山中学模拟预测)如图,在单位正方体中,点P是线段上的动点,给出以下四个命题:
①异面直线与直线所成角的大小为定值;
②二面角的大小为定值;
③若Q是对角线上一点,则长度的最小值为;
④若R是线段上一动点,则直线与直线不可能平行.
其中真命题有( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】对于①,由正方体的性质可知,平面,又平面,
故,异面直线与直线的所成的角为定值,①正确;
对于②,平面即为平面,平面与平面所成的二面角为定值,故二面角为定值,②正确;
对于③,将平面沿直线翻折到平面内,平面图如下,过点做,,,此时,的值最小.
由题可知,,,
,
则,,
故,又,
故的最小值为,故③正确.
对于④,在正方体中易证平面,设,则即为二面角的平面角,又正方体边长为1,故,则,由余弦定理得,故,同理,
故在上必然存在一点,使得二面角为,即平面平面,平面与平面的交线为,
则,过点作的垂线.此时平面,又平面,故.故④错误.
故选:C.
例5.(2023·北京·人大附中模拟预测)已知正方体为对角线上一点(不与点重合),过点作垂直于直线的平面,平面与正方体表面相交形成的多边形记为,下列结论不正确的是( )
A.只可能为三角形或六边形
B.平面与平面的夹角为定值
C.当且仅当为对角线中点时,的周长最大
D.当且仅当为对角线中点时,的面积最大
【答案】C
【解析】如下图,在正方体中,体对角线与平面,平面,平面都垂直,由图可知,在平面运动过程中只可能为三角形或六边形,故A正确;由题可知平面与都垂直,所以平面在移动过程中都是平行平面,与平面的夹角为定值,故B正确;如下图,当为对角线中点时,为正六边形,而三角形为等边三角形,根据中位线定理,可得两个截面周长相等,故C错误;由图可得,当为对角线中点时,为正六边形,设边长,面积为,当向下刚开始移动时,为六边形,结合图形可知两邻边一条增大,一条减小且变化量相等,设,而且所有六边形的高都相等且等于,两邻边夹角都为,则六边形梯形,当为三角形时面积最大为,所以当且仅当为对角线中点时,的面积最大,故D正确.
故选:C.
例6.(2023·河南省实验中学高一期中)如图,在正方体中,,,分别为,的中点,,分别为棱,上的动点,则三棱锥的体积( )
A.存在最大值,最大值为B.存在最小值,最小值为
C.为定值D.不确定,与,的位置有关
【答案】C
【解析】如下图,连接,在正方体中,,分别为,的中点,可得,,所以当在棱移动时,到平面的距离为定值,当在棱移动时,到的距离为定值,所以为定值,则三棱锥的体积为定值. 平面即平面,作,由于,可得平面MABN,由,可得,而,.
故选:C.
例7.(2023·山东聊城·三模)在直四棱柱中,所有棱长均2,,P为的中点,点Q在四边形内(包括边界)运动,下列结论中正确的是( )
A.当点Q在线段上运动时,四面体的体积为定值
B.若平面,则AQ的最小值为
C.若的外心为M,则为定值2
D.若,则点Q的轨迹长度为
【答案】ABD
【解析】对于A,因为,又因为面, 面,所以面,所以直线到平面的距离相等,又的面积为定值,故A正确;
对于B,取的中点分别为,连接,
则易证明:,面,面,所以面,
又因为,,面,面,所以面,
,所以平面面,面,所以平面
当时,AQ有最小值,则易求出,所以重合,所以则AQ的最小值为,故B正确;
对于C,若的外心为M,,过作于点,
则.故C错误;
对于D,过作于点,易知平面,
在上取点,使得,则,
所以若,则在以为圆心,2为半径的圆弧上运动,
又因为所以,则圆弧等于,故D正确.
故选:ABD.
考点三:体积、面积、周长、距离最值与范围问题
几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值
例8.(2023·浙江·高三阶段练习)如图,在四棱锥中,底面是边长为的正方形,,为的中点.过作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为,,则的最小值为( )
A.B.C.D.
【答案】A
【解析】
过作平面的垂线,垂足为,连,设的交点为,在中过作直线交于两点,由相交直线确定平面,则四边形为过的截面.由计算可得,得为正三角形,,所以为的重心,设,由向量运算可得,又,可得,所以,由三点共线,得,即,易得到平面的距离为,到平面的距离为1,因为,所以,,得,,由,,得,当且仅当取等号,所以,即的最小值为.
故选:A.
例9.(2023·河南省实验中学高一期中)如图,在正方体中,,,分别为,的中点,,分别为棱,上的动点,则三棱锥的体积( )
A.存在最大值,最大值为B.存在最小值,最小值为
C.为定值D.不确定,与,的位置有关
【答案】C
【解析】如下图,连接,在正方体中,,分别为,的中点,可得,,所以当在棱移动时,到平面的距离为定值,当在棱移动时,到的距离为定值,所以为定值,则三棱锥的体积为定值. 平面即平面,作,由于,可得平面MABN,由,可得,而,.
故选:C.
例10.(2023·全国·高三专题练习)已知某正四棱锥的体积是,该几何体的表面积最小值是,我们在绘画该表面积最小的几何体的直观图时所画的底面积大小是,则和的值分别是( )
A.3;B.4;C.4;D.3;
【答案】C
【解析】如图,O为底面ABCD的中心,E为BC的中点,连接PO,OE,
设该正四棱锥底面边长为,高为,且,由题意,.
易有,,则,
所以,,将代入并化简得:,
于是,
.
当且仅当时,取“=”.
易知,此时底面ABCD直观图的面积.
故选:C.
考点四:立体几何中的交线问题
几何法
例11.(2023·河南·高三校联考阶段练习)在正三棱锥P-ABC中,,BC=6,M,N,Q,D分别是AP,BC,AC,PC的中点,平面MQN与平面PBC的交线为l,则直线QD与直线l所成角的正弦值为( )
A.B.C.D.
【答案】C
【解析】取的中点,连接,由题意可得,
又因为,所以,
所以四边形是平行四边形,所以,
所以四点共面,
所以平面MQN与平面PBC的交线为l即为,
直线QD与直线l所成角即为直线QD与直线所成角即为,
因为正三棱锥P-ABC中,,BC=6,
所以,
所以,
,
所以.
故选:C.
例12.(2023·北京海淀·高二中央民族大学附属中学校考开学考试)已知在长方体中,,,记平面和平面的交线为,已知二面角的大小为60°,则的值为( )
A.B.1C.D.2
【答案】C
【解析】如图所示:连接,,故四点共面,
故平面和平面的交线为,
平面,平面,故,又,
平面,平面,
故二面角的大小为,.
故选:C
例13.(2023·广东广州·高三统考阶段练习)已知三棱锥的棱,,两两互相垂直,,以顶点为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为( )
A.B.C.D.
【答案】D
【解析】因为三棱锥的棱,,两两互相垂直,,
所以球与三棱锥的表面的交线均为以点为顶点,半径为,圆心角为的圆弧,其长度为,
设点到平面的距离为,
因为,所以是边长为的等边三角形,
由可得,解得,
所以球与表面的交线为以的中心为圆心,半径为的圆,其长度为,
因为,
所以以顶点为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为,
故选:D
例14.(2023·上海·高三专题练习)直三棱柱中,,,,,设平面与平面的交线为,则与的距离为( ).
A.1B.C.17D.2.6
【答案】D
【解析】如图,将直三棱柱补成直四棱柱,且四边形为平行四边形,则平面即为平面,所以直线为,则与的距离即为则与的距离,设为,
由已知可得:在三角形中,
,,
,
,
则,
,
,
得.
故选:D.
考点五:空间线段以及线段之和最值问题
几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值
例15.(2023·湖南长沙·高三湖南师大附中校考阶段练习)在棱长为3的正方体中,点E满足,点F在平面内,则|的最小值为 .
【答案】
【解析】以点D为原点,所在直线分别为轴,建立空间直角坐标系,
如图所示,则,,,
因为,,且,则平面,
又因为平面,所以,
同理得平面,因为平面,所以,
因为,且平面,所以平面,
记与平面交于点H,连接,,,且,
则,可得,
由得点关于平面对称的点为,
所以的最小值为.
故答案为:.
例16.(2023·全国·高三专题练习)在直三棱柱中,,,,是线段上的动点,则的最小值是 .
【答案】
【解析】因为平面,平面,所以,
又平面,
所以平面,
又平面,所以,
因为,所以四边形是正方形,所以,
如图,将沿展开,使与在同一平面内,
则即为的最小值,,
由余弦定理得,
所以的最小值是.
故答案为:.
例17.(2023·广东梅州·统考三模)如图,在三棱锥中,是的中点,,分别为线段,上的动点,,平面,若,则的最小值为 .
【答案】8
【解析】因为平面,平面,所以
则,又,平面
所以平面,因为平面,所以
则在平面上,以为原点,所在直线为轴建立平面直角坐标系,如图所示:
则,设
因为,所以直线的方程为,设,
则
由于变量不具有等量关系,故时,有最小
即当时,最小;
过点作BD垂线,垂足为,连接,
因为平面,,,平面
所以,所以平面,
因为平面,所以
又,平面,所以平面
因为平面,所以,又,
所以,由平面,所以.
因为,
所以,
所以.
因为,,平面,
所以,
所以当沿翻转到平面时,四边形构成矩形,
所以的最小值为,
即的最小值为8.
故答案为:8.
考点六:空间角问题
1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:
(1)作图:作出空间角的平面角.
(2)证明:证明所给图形是符合题设要求的.
(3)计算:在证明的基础上计算得出结果.
简称:一作、二证、三算.
2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.
3、求直线与平面所成角的常见方法
(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.
(2)等积法:公式,其中是斜线与平面所成的角,h是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.
(3)证垂法:通过证明线面垂直得到线面角为90°.
4、作二面角的平面角常有三种方法
(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.
(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.
(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.
例18.(2023·全国·高三专题练习)在三棱台中,底面BCD,,,.若A是BD中点,点P在侧面内,则直线与AP夹角的正弦值的最小值是( )
A.B.C.D.
【答案】B
【解析】如图,分别取的中点,连接,
取的中点,连接
由三棱台的性质知,且,
所以四边形为平行四边形,
又,,故直线与AP的夹角为直线与AP的夹角,
要使直线与AP夹角的正弦值最小,需点到AP的距离最小,
又点P在侧面内,则需点到AP的距离最小,即点到面的距离,
设点到面的距离为,利用等体积法知
即,即,
在直角中,,,
又在中,,,,
,又
设直线与AP夹角的最小值为,则
故选:B
例19.(2023·浙江台州·高三期末)已知在正方体中,点为棱的中点,直线在平面内.若二面角的平面角为,则的最小值为( )
A.
B.
C.
D.
【答案】B
【解析】连接AE,取AE的中点P,过点P作FG⊥AE交CD于点F,交AB于点G,设正方体棱长为2,由勾股定理可知:,,同理,取的中点,连接,取的中点,过点作MN⊥交于点M,交于点N,则直线即为直线,此时,MF⊥CD,NG⊥AB,OP⊥底面ABCD,因为FG平面ABCD,所以OP⊥FG,因为AE∩OP=P,所以FG⊥平面AOP,连接OA,OE
,因为OA平面AOP,所以OA⊥FG,因为MN∥FG,所以OA⊥MN,同理可证:OE⊥MN,所以即为二面角的平面角,由对称性可知:此角即为二面角的平面角的最大值,且,其中,由勾股定理得:,所以,则
故选:B
例20.(2023·全国·高三专题练习)如图,在正方体中,在棱上,,平行于的直线在正方形内,点到直线的距离记为,记二面角为为,已知初始状态下,,则( )
A.当增大时,先增大后减小B.当增大时,先减小后增大
C.当增大时,先增大后减小D.当增大时,先减小后增大
【答案】C
【解析】由题设,以为原点,为轴建立空间直角坐标系,
设正方体的棱长为2,则,,
设直线与交于,则,
则,,,
设平面的法向量为,
,,令,则
设平面的法向量为,又
,,令,则
利用空间向量夹角公式得
对于AB,令,则
显然函数在时为减函数,即减小,则增大,故AB 错误;
对于CD,当时,则
令,
求导
,令,得
故当时,,函数单减,即单减,增大;当时,,函数单增,即单增,减小;故当增大时,先增大后减小
故选:C
考点七:轨迹问题
解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.
例21.(2023·四川泸州·三模)已知三棱锥的底面为等腰直角三角形,其顶点P到底面ABC的距离为3,体积为24,若该三棱锥的外接球O的半径为5,则满足上述条件的顶点P的轨迹长度为( )
A.6πB.30π
C.D.
【答案】D
【解析】依题意得,设底面等腰直角三角形的边长为,
三棱锥的体积
解得:
的外接圆半径为
球心到底面的距离为
,
又顶点P到底面ABC的距离为3,
顶点的轨迹是一个截面圆的圆周
当球心在底面和截面圆之间时,
球心到该截面圆的距离为,
截面圆的半径为,
顶点P的轨迹长度为;
当球心在底面和截面圆同一侧时,
球心到该截面圆的距离为,
截面圆的半径为,
顶点P的轨迹长度为;
综上所述,顶点P的轨迹的总长度为
故选:D.
例22.(2023·浙江温州·高三开学考试)如图,正方体,P为平面内一动点,设二面角的大小为,直线与平面所成角的大小为.若,则点P的轨迹是( )
A.圆B.抛物线C.椭圆D.双曲线
【答案】D
【解析】连接AC交BD于O,取中点,连接
以O为原点,分别以OA、OB、所在直线为x轴、y轴、z轴建立空间直角坐标系,如图:
令正方体边长为2,则,
面的一个法向量为,
面的一个法向量为
则,故二面角的大小为
又二面角的大小,则或
由,,可得
又
整理得
即,是双曲线.
故选:D
例23.(2023·湖南·雅礼中学二模)已知菱形的各边长为.如图所示,将沿折起,使得点到达点的位置,连接,得到三棱锥,此时.则三棱锥的体积为__________,是线段的中点,点在三棱锥的外接球上运动,且始终保持,则点的轨迹的周长为__________.
【答案】
【解析】取中点,则,
∴平面,,又,
∴,
则三棱锥的高,
三棱锥体积为;
作,设点轨迹所在平面为,
则平面经过点且,
设三棱锥外接球的球心为的中心分别为,
易知平面平面,且四点共面,
由题可得,,
解Rt,得,又,
则三棱锥外接球半径,
易知到平面的距离,
故平面截外接球所得截面圆的半径为,
∴截面圆的周长为,即点轨迹的周长为.
故答案为:;.
考点八:以立体几何为载体的情境题
以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.
例24.(2023·黑龙江大庆·大庆实验中学校考模拟预测)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各项点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是,所以正四面体在每个顶点的曲率为,故其总曲率为.已知多面体的顶点数V,棱数E,面数F满足,则八面体的总曲率为( )
A.B.C.D.
【答案】C
【解析】设每个面记为边形,
则所有的面角和为,
根据定义可得该类多面体的总曲率.
故选:C.
例25.(2023·湖南岳阳·高二统考期末)碳()是一种非金属单质,它是由个碳原子构成,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2,则其六元环的个数为( ).
A.12B.20C.32D.60
【答案】B
【解析】根据题意, 碳()由个顶点,有个面,
由顶点数-棱数+面数=2可得:棱数为,
设正五边形有个,正六边形有个,
则,解得:,所以六元环的个数为个,
故选:B.
例26.(2023·上海·高三校联考阶段练习)设、、…、为平面内的个点,在平面内的所有点中,若点到、、…、点的距离之和最小,则称点为、、…、点的一个“中位点”,有下列命题:①、、三个点共线,在线段上,则是、、的中位点;②直角三角形斜边的中点是该直线三角形三个顶点的中位点;③若四个点、、、共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是( )
A.②④B.①②C.①④D.①③④
【答案】C
【解析】①若三个点共线,在线段上,根据两点之间线段最短,
则是的中位点,正确;
②举一个反例,如边长为的直角三角形,此直角三角形的斜边的中点到三个顶点的距离之和为,而直角顶点到三个顶点的距离之和为7,
∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;
③若四个点共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;
④如图,在梯形中,对角线的交点是任意一点,则根据三角形两边之和大于第三边得,
∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.
故①④正确.
故选:C
考点九:翻折问题
1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.
2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质.
例27.(2023·上海静安·高二校考阶段练习)如图,矩形中,,为边的中点,将沿直线翻折成,若为线段的中点,则在翻折过程中,下面说法中正确的序号是( )
①是定值
②存在某个位置,使
③存在某个位置,使
④不在底面上时,则平面
A.①②B.①④C.①③D.②④
【答案】B
【解析】取中点,连接,∵是中点,所以且,
又是矩形的边的中点,则且,
∴且,∴是平行四边形,∴且,
显然的长是定值,因此是定值,①,
而不在底面上时,平面,平面,∴平面,④正确;
在等腰直角中,,因此与不可能垂直,即与不可能垂直,③错误;
若,取中点,连接,显然,又,平面,∴平面,又平面,∴,
但在矩形中,可得,,即,∴不成立,③错误,
故选:B.
例28.(2023·全国·高三专题练习)已知矩形中,,,将沿矩形的对角线所在的直线进行翻折,在翻折过程中,下列说法正确的是( )
A.存在某个位置,使得直线与直线垂直
B.存在某个位置,使得直线与直线垂直
C.存在某个位置,使得直线与直线垂直
D.对任意位置,三对直线“与”,“与”,“与”均不垂直
【答案】B
【解析】矩形在翻折前和翻折后的图形如图(1)、图(2)所示.
在图(1)中,过点A作⊥,垂足为E,过点C作⊥,垂足为F,
由边不相等可知点不重合.
在图(2)中,连接,
对于选项A,若⊥,又知⊥,,所以⊥平面,
所以⊥,与点不重合相矛盾,故选项A错误;
对于选项B,若⊥,又知⊥,,所以⊥平面,
所以⊥,由可知,存在这样的等腰直角三角形,
使得直线与直线垂直,故选项B正确;
对于选项C,若⊥,又知⊥,,
所以⊥平面,所以⊥,
已知,,则,所以不存在这样的直角三角形,故选项C错误;
由以上可知选项D错误.
故选:B.
例29.(2023·浙江·高二校联考期中)如图1,在菱形中,,是其对角线,是上一点,且,将沿直线翻折,形成四棱锥(如图2),则在翻折过程中,下列结论中正确的是( )
A.存在某个位置使得B.存在某个位置使得
C.存在某个位置使得D.存在某个位置使得
【答案】B
【解析】对于选项A,沿翻折,在翻折过程中,与夹角始终不变,,故A错误;
对于选项B,,转化为判断和是否会垂直,由图观察翻折过程中和夹角变化范围是,故存在某个位置使得,故B正确;
对于选项C,由图观察翻折过程中和夹角的变化范围是,故不存在某个位置使得,故C错误;
对于选项D,由于平行于翻折前的,故只需观察翻折过程中与翻折前的的夹角变化范围,由图观察翻折过程中与的夹角变化范围是,所以不存在某个位置使得,故D错误.
故选:B.
考点要求
考题统计
考情分析
球与截面面积问题
2021年天津卷第6题,5分
2018年I卷第12题,5分
【命题预测】
预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:
(1)以选择题或填空题形式出现,考查学生的综合推理能力.
(2)热点是简单几何体的表面积或体积,最短路径问题,截面问题.
最值与范围问题
2023年甲卷第16题,5分
2022年乙卷第9题,5分
2022年I卷第8题,5分
2021年上海卷第9题,5分
角度问题
2023年天津卷第8题,5分
2023年乙卷第9题,5分
2022年浙江卷第8题,4分
2022年甲卷第9题,5分
专题11 平面向量小题全归类(13大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考): 这是一份专题11 平面向量小题全归类(13大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考),文件包含专题11平面向量小题全归类13大核心考点讲义原卷版docx、专题11平面向量小题全归类13大核心考点讲义解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。
专题06 函数与导数常见经典压轴小题归类(26大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考): 这是一份专题06 函数与导数常见经典压轴小题归类(26大核心考点)(讲义)-2024年高考数学二轮复习讲义(新教材新高考),文件包含专题06函数与导数常见经典压轴小题归类26大核心考点讲义原卷版docx、专题06函数与导数常见经典压轴小题归类26大核心考点讲义解析版docx等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。
2024年高考数学二轮复习(全国通用) 专题14 立体几何常见压轴小题全归纳(练习)(原卷版+解析): 这是一份2024年高考数学二轮复习(全国通用) 专题14 立体几何常见压轴小题全归纳(练习)(原卷版+解析),共67页。