初中人教版24.1.2 垂直于弦的直径教学ppt课件
展开1.进一步认识圆,了解圆是轴对称图形.2.理解垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题.(重点)3.灵活运用垂径定理解决有关圆的问题.(难点)
赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,求赵州桥主桥拱的半径(结果保留小数点后一位)?
剪一个圆形纸片,沿着它的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?你能证明你的结论吗?
可以发现,圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.
分析:要证明圆是轴对称图形,只需证明圆上任意一点关于直径所在的直线(对称轴)的对称点也在圆上.
证明:如图,设CD是⊙O的任意一条直径,A为⊙O上点C,D以外的任意一点.
过点A作AA′⊥CD,交⊙O于点A′,垂足为M,连接OA,OA′.
在△OAA′中, ∵ OA=OA′ ∴ △OAA′是等腰三角形 又∵AA′⊥CD ∴ AM=MA′ 即CD是AA′的垂直平分线 这就是说,对于圆上任意一点A,在圆上都有关于直线CD的对称点A′,因此⊙O关于直线CD对称.
圆的对称性:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴.
这样,我们就得到垂径定理: 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
温馨提示:垂径定理是圆中一个重要的定理,三种语言要相互转化,形成整体,才能运用自如.
下列图形是否具备垂径定理的条件?如果不是,请说明为什么?
不是,因为CD没有过圆心
垂径定理的几个基本图形:
如果把垂径定理(垂直于弦的直径平分弦,并且平分弦所对的两条弧)结论与题设交换一条,命题是真命题吗?①过圆心 ;②垂直于弦; ③平分弦;④平分弦所对的优弧 ; ⑤平分弦所对的劣弧.上述五个条件中的任何两个条件都可以推出其他三个结论吗?
举例证明其中一种组合方法已知:_________;求证:_________.
②CD⊥AB,垂足为E
证明:连接AO,BO,则AO=BO,
又∵AE=BE,∴△AOE≌△BOE(SSS),
∴∠AEO=∠BEO=90°,
进一步,我们还可以得到推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
例1.赵州桥是我国隋代建造的石拱桥,距今约有1400年的历史,是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆弧形,它的跨度(弧所对的弦的长)为37m,拱高(弧的中点到弦的距离)为7.23m,求赵州桥主桥拱的半径(结果保留小数点后一位)?
如图,工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10cm,测得钢珠顶端离零件表面的距离为8cm,则这个小圆孔的宽口AB的长度为多少?
例2.☉O的半径为13cm,AB、CD是☉O的两条弦,AB∥CD,AB=24cm,CD=10cm,求AB和CD之间的距离.
【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
解:当弦AB和CD在圆心同侧时,过点0作OE⊥CD于点E,交AB于点F,连结OA,OC.∵AB=24cm,CD=10cm,∴CE=5cm,AF=12cm,∵OA=OC=13cm,∴EO=12cm,OF=5cm,∴EF=OE-OF=12−5=7cm.
解:当弦AB和CD在圆心异侧时,过点0作OE⊥CD于点E,作OF⊥AB于点F,连结OA,OC.∵AB=24cm,CD=10cm,∴AF=12cm,CE=5cm,∵OA=OC=13cm,∴EO=12cm,OF=5cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.
在圆中有关弦长a,半径r, 弦心距d(圆心到弦的距离),弓形高h的计算题时,常常通过连半径或作弦心距构造直角三角形,利用垂径定理和勾股定理求解.
涉及垂径定理时辅助线的添加方法
弦a,弦心距d,弓形高h,半径r之间有以下关系:
d+h=r
例3.如图,AB、CD是半径为5的☉O的两条弦,AB=8、CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,求PA+PC的最小值.
2.一个圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则高度CD的长为( )A.2m B.4m C.6m D.8m
7.如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F,BD=5,则OF=_____.
10.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.
11.如图,AB是半圆O的直径,C、D是半圆上的点,且OD⊥AC于点E,连接BE,BC,若AC=8,DE=2.(1)求半圆的半径长;(2)求BE的长.
垂径定理: 垂直于弦的直径平分弦,并且平分弦所对的两条弧.
垂径定理的推论: 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
人教版九年级上册24.1.2 垂直于弦的直径示范课ppt课件: 这是一份人教版九年级上册24.1.2 垂直于弦的直径示范课ppt课件,共27页。PPT课件主要包含了教学目标,复习回顾,新知探究,归纳小结,巩固练习,课堂练习,课堂总结等内容,欢迎下载使用。
数学第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径评课课件ppt: 这是一份数学第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径评课课件ppt,共20页。PPT课件主要包含了学习目标,新课引入,圆上任意两点,合作探究,等腰三角形,三线合一,垂直平分线,直线CD,垂直于,垂径定理等内容,欢迎下载使用。
初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径课文配套ppt课件: 这是一份初中数学人教版九年级上册第二十四章 圆24.1 圆的有关性质24.1.2 垂直于弦的直径课文配套ppt课件,共36页。PPT课件主要包含了复习回顾等内容,欢迎下载使用。