年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    最新高考数学二轮复习讲义【讲通练透】 专题43 排列组合

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题43 排列组合(教师版).docx
    • 学生
      专题43 排列组合(学生版).docx
    专题43 排列组合(教师版)第1页
    专题43 排列组合(教师版)第2页
    专题43 排列组合(教师版)第3页
    专题43 排列组合(学生版)第1页
    专题43 排列组合(学生版)第2页
    专题43 排列组合(学生版)第3页
    还剩47页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新高考数学二轮复习讲义【讲通练透】 专题43 排列组合

    展开

    这是一份最新高考数学二轮复习讲义【讲通练透】 专题43 排列组合,文件包含专题43排列组合教师版docx、专题43排列组合学生版docx等2份试卷配套教学资源,其中试卷共76页, 欢迎下载使用。
    1、明确模拟练习的目的。不但检测知识的全面性、方法的熟练性和运算的准确性,更是训练书写规范,表述准确的过程。
    2、查漏补缺,以“错”纠错。每过一段时间,就把“错题笔记”或标记错题的试卷有侧重的看一下。查漏补缺的过程也就是反思的过程,逐渐实现保强攻弱的目标。
    3、严格有规律地进行限时训练。特别是强化对解答选择题、填空题的限时训练,将平时考试当作高考,严格按时完成,并在速度体验中提高正确率。
    4、保证常规题型的坚持训练。做到百无一失,对学有余力的学生,可适当拓展高考中难点的训练。
    5、注重题后反思总结。出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近,及时处理问题,争取“问题不过夜”。
    6、重视每次模拟考试的临考前状态的调整及考后心理的调整。以平和的心态面对高考。
    专题43 排列组合
    【题型归纳目录】
    题型一:排列数与组合数的推导、化简和计算
    题型二:直接法
    题型三:间接法
    题型四:捆绑法
    题型五:插空法
    题型六:定序问题(先选后排)
    题型七:列举法
    题型八:多面手问题
    题型九:错位排列
    题型十:涂色问题
    题型十一:分组问题
    题型十二:分配问题
    题型十三:隔板法
    题型十四:数字排列
    题型十五:几何问题
    题型十六:分解法模型与最短路径问题
    题型十七:排队问题
    题型十八:构造法模型和递推模型
    题型十九:环排问题
    【考点预测】
    知识点1、排列与排列数
    (1)定义:从个不同元素中取出个元素排成一列,叫做从个不同元素中取出个元素的一个排列.从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示.
    (2)排列数的公式:.
    特例:当时,;规定:.
    (3)排列数的性质:
    ①;②;③.
    (4)解排列应用题的基本思路:通过审题,找出问题中的元素是什么,是否与顺序有关,有无特殊限制条件(特殊位置,特殊元素).
    注意:排列数公式的两种不同表达形式本质是一样的,但作用略有不同,常用于具体数字计算;而在进行含字母算式化简或证明时,多用.
    知识点2、组合与组合数
    (1)定义:从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数,用符号表示.
    (2)组合数公式及其推导
    求从个不同元素中取出个元素的排列数,可以按以下两步来考虑:
    第一步,先求出从这个不同元素中取出个元素的组合数;
    第二步,求每一个组合中个元素的全排列数;
    根据分步计数原理,得到;
    因此.
    这里,,且,这个公式叫做组合数公式.因为,所以组合数公式还可表示为:.特例:.
    注意:组合数公式的推导方法是一种重要的解题方法!在以后学习排列组合的混合问题时,一般都是按先取后排(先组合后排列)的顺序解决问题.公式常用于具体数字计算,常用于含字母算式的化简或证明.
    (3)组合数的主要性质:①;②.
    (4)组合应用题的常见题型:
    = 1 \* GB3 \* MERGEFORMAT ①“含有”或“不含有”某些元素的组合题型
    = 2 \* GB3 \* MERGEFORMAT ②“至少”或“最多”含有几个元素的题型
    知识点3、排列和组合的区别
    组合:取出的元素地位平等,没有不同去向和分工.
    排列:取出的元素地位不同,去向、分工或职位不同.
    注意:排列、组合都是研究事物在某种给定的模式下所有可能的配置数目问题,它们之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题.排列是在组合的基础上对入选的元素进行排队,因此,分析解决排列组合综合问题的基本思维是“先组合,后排列”.
    知识点4、解决排列组合综合问题的一般过程
    1、认真审题,确定要做什么事;
    2、确定怎样做才能完成这件事,即采取分步还是分类或是分步与分类同时进行,弄清楚分多少类及多少步;
    3、确定每一步或每一类是排列(有序)问题还是组合(无序)问题,元素总数是多少及取出多少个元素;
    4、解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略.
    【方法技巧与总结】
    1、如图,在圆中,将圆分等份得到个区域,,,,,现取种颜色对这个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有种.
    2、错位排列公式
    3、数字排列问题的解题原则、常用方法及注意事项
    (1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.
    4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:
    (1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素;
    (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置;
    (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.
    5、解决相邻问题的方法是“捆绑法”,其模型为将n个不同元素排成一排,其中某k个元素排在相邻位置上,求不同排法种数的方法是:先将这k个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有种排法.根据分步乘法计数原理可知,符合条件的排法共有种.6、解决不相邻问题的方法为“插空法”,其模型为将个不同元素排成一排,其中某个元素互不相邻(),求不同排法种数的方法是:先将()个元素排成一排,共有种排法;然后把个元素插入个空隙中,共有种排法.根据分步乘法计数原理可知,符合条件的排法共有·种.
    【典例例题】
    题型一:排列数与组合数的推导、化简和计算
    例1.(2022·山东·高密三中高三阶段练习)已知n,m为正整数,且,则在下列各式中错误的是( )
    A.;B.;C.;D.
    例2.(2022·江苏镇江·高三开学考试)已知,为正整数,且,则在下列各式中,正确的个数是( )
    ①;②;③;④
    A.1B.2C.3D.4
    例3.(2022·全国·高三专题练习)若,则( )
    A.7B.8C.9D.10
    例4.(2022·全国·高三专题练习)已知,则的值为( )
    A.3B.3或4C.4D.4或5
    例5.(多选题)(2022·全国·高三专题练习)已知,则的可能取值是( )
    A.0B.1C.2D.3
    例6.(多选题)(2022·全国·高三专题练习)下列等式正确的是( )
    A.B.
    C.D.
    例7.(多选题)(2022·全国·高三专题练习)下列等式中,正确的是( )
    A.B.
    C.D.
    例8.(2022·全国·高三专题练习)解下列不等式或方程
    (1)
    (2)
    例9.(2022·全国·高三专题练习)(1)计算:;
    (2)计算:;
    (3)解方程:.
    例10.(2022·全国·高三专题练习)利用组合数公式证明.
    题型二:直接法
    例11.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有( )种
    A.54B.72C.96D.120
    例12.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有( )
    A.720种B.600种C.480种D.384种
    例13.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有( )
    A.24种B.6种C.4种D.12种
    例14.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为( ).
    A.10B.30C.40D.46
    题型三:间接法
    例15.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有( ).
    A.1860种B.3696种C.3600种D.3648种
    例16.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有( )
    A.21种B.231种C.238种D.252种
    例17.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( )
    A.408种B.240种C.1092种.D.120种
    例18.红五月,某校团委决定举办庆祝中国共产党成立100周年“百年荣光,伟大梦想”联欢会,经过初赛,共有6个节目进入决赛,其中2个歌舞类节目,2个小品类节目,1个朗诵类节目,1个戏曲类节目.演出时要求同类节目不能相邻,则演出顺序的排法总数是( )
    A.B.C.D.
    题型四:捆绑法
    例19.(2022·四川·树德怀远中学高三开学考试(理))甲、乙等5人去北京天安门游玩,在天安门广场排成一排拍照留念,则甲和乙相邻且都不站在两端的排法有( )
    A.12种B.24种C.48种D.120种
    例20.(2022·四川成都·高三开学考试(理))某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有( )种不同的排法
    A.B.C.D.
    例21.(2022·全国·高三专题练习)甲、乙、丙、丁、戊5人排成一排,则甲、乙相邻的排法有( )
    A.72种B.60种C.48种D.36种
    例22.(2022·全国·高三专题练习)3位教师和4名学生站一排,3位教师必须站在一起,共有( )种站法.
    A.144B.360C.480D.720
    例23.(2022·全国·高三专题练习)某晚会上需要安排4个歌舞类节目和2个语言类节目的演出顺序,要求语言类节目之间有且仅有2个歌舞类节目,则不同的演出方案的种数为( ).
    A.72B.96C.120D.144
    题型五:插空法
    例24.(2022·全国·高三专题练习)2022年2月4日,中国北京第24届奥林匹克冬季运动会开幕式以二十四节气的方式开始倒计时创意新颖,惊艳了全球观众.衡阳市某中学为了弘扬我国二十四节气文化,特制作出“立春”、“惊蛰”、“雨水”、“春分”、“清明”、“谷雨”六张知识展板分别放置在六个并排的文化橱窗里,要求“立春”和“春分”两块展板相邻,且“清明”与“惊蛰”两块展板不相邻,则不同的放置方式有多少种?( )
    A.24B.48C.144D.244
    例25.(2022·全国·高三专题练习)高中数学新教材有必修一和必修二,选择性必修有一、二、三共5本书,把这5本书放在书架上排成一排,必修一、必修二不相邻的排列方法种数是( )
    A.72B.144C.48D.36
    例26.(2022·全国·高三专题练习)五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有( )
    A.18种B.24种C.36种D.72种
    例27.(2022·全国·高三专题练习(理))马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有( )种
    A.15B.20C.10D.9
    例28.(2022·全国·模拟预测)某等候区有7个座位(连成一排),甲、乙、丙三人随机就坐,因受新冠疫情影响,要求他们每两人之间至少有一个空位,则不同的坐法有( )A.4种B.10种C.20种D.60种
    例29.(2022·全国·高三专题练习)为迎接新年到来,某中学2022作“唱响时代强音,放飞青春梦想”元旦文艺晚会如期举行.校文娱组委员会要在原定排好的8个学生节目中增加2个教师节目,若保持原来的8个节目的出场顺序不变,则不同排法的种数为( )
    A.36B.45C.72D.90
    题型六:定序问题(先选后排)
    例30.满足,且的有序数组共有( )个.
    A.B.C.D.
    例31.五人并排站成一排,如果必须站在的右边,(可以不相邻)那么不同的排法有( )
    A.120种B.90种C.60种D.24种
    例32.DNA是形成所有生物体中染色体的一种双股螺旋线分子,由称为碱基的化学成分组成它看上去就像是两条长长的平行螺旋状链,两条链上的碱基之间由氢键相结合.在DNA中只有4种类型的碱基,分别用A、C、G和T表示,DNA中的碱基能够以任意顺序出现两条链之间能形成氢键的碱基或者是A-T,或者是C-G,不会出现其他的联系因此,如果我们知道了两条链中一条链上碱基的顺序,那么我们也就知道了另一条链上碱基的顺序.如图所示为一条DNA单链模型示意图,现在某同学想在碱基T和碱基C之间插入3个碱基A,2个碱基C和1个碱基T,则不同的插入方式的种数为( )
    A.20B.40C.60D.120
    例33.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( )
    A.120种B.80种C.20种D.48种
    例34.某次数学获奖的6名高矮互不相同的同学站成两排照相,后排每个人都高于站在他前面的同学,则共有多少种站法( )
    A.36B.90C.360D.720
    例35.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为 ( )
    A.2520B.5040C.7560D.10080
    例36.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是( )
    A.6B.10C.12D.24
    题型七:列举法
    例37.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有( )
    A.6种B.8种C.10种D.16种
    例38.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )
    A.4种B.5种C.6种D.12种
    例39.设,,,那么满足的所有有序数组的组数为( )
    A.45B.46C.47D.48
    例40.从集合中任意选择三个不同的数,使得这三个数组成等差数列,这样的等差数列有( )个
    A.98B.56C.84D.49
    例41.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
    题型八:多面手问题
    例42.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.
    A.B.C.D.
    例43.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法
    A.225B.185C.145D.110
    例44.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有( )
    A.26种B.30种C.37种D.42种
    例45.某龙舟队有9名队员,其中3人只会划左舷,4人只会划右舷,2人既会划左舷又会划右舷.现要选派划左舷的3人、右舷的3人共6人去参加比赛,则不同的选派方法共有( )
    A.56种B.68种
    C.74种D.92种
    题型九:错位排列
    例46.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有( )
    A.10种B.20种C.30种D.60种
    例47.将编号为、、、、、的小球放入编号为、、、、、的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为( )
    A.B.C.D.
    例48.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有( )
    A.20B.90C.15D.45
    题型十:涂色问题
    例49.(2022·陕西·宝鸡市陈仓高级中学高三开学考试(理))某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有( )种
    A.36 B.48 C.54 D.72
    例50.(2022·全国·高三专题练习)随机给如图所示的四块三角形区域涂色,有红、黄、蓝、绿、黑这5种颜色供选择,则“任意两个有公共边的三角形所涂颜色不同”的概率为( )
    A.B.C.D.
    例51.(2022·全国·高三专题练习)无盖正方体容器的五个面上分别标有A、B、C、D、E五个字母,现需要给容器的5个表面染色,要求有公共棱的面不能染同一种颜色,现有5种不同的颜色可供选择,则不同的染色方案有( )种.
    A.420B.340C.300D.120
    例52.(2022·全国·高三专题练习(文))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为( )
    A.B.C.D.
    例53.(2022·全国·高三专题练习)在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色,现有种不同的颜色可供选择,则不同涂色方案有( )
    A.种B.种C.种D.种
    例54.(2022·全国·高三专题练习(理))用种不同的颜色对正四棱锥的条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种
    A.B.C.D.
    例55.(2022·全国·高三专题练习(理)) 用红、黄、蓝三种颜色之一去涂图中标号为的个小正方形(如图1),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“、、”的小正方形涂相同的颜色,则符合条件的所有涂法共有
    A.种B.种C.种D.种
    题型十一:分组问题
    例56.为了贯彻落实中央新疆工作座谈会和全国对口支援新疆工作会议精神,促进边疆少数民族地区教育事业发展,我市教育系统选派了三位男教师和两位女教师支援新疆,这五名教师被分派到三个不同地方对口支援,每位教师只去一个地方,每个地方至少去一人,其中两位女教师分派到同一个地方,则不同的分派方法有( )
    A.18种B.36种C.68种D.84种
    例57.2021年春节期间电影《你好,李焕英》因“搞笑幽默不庸俗,真心实意不煽情”深受热棒,某电影院指派5名工作人员进行电影调查问卷,每个工作人员从编号为1,2,3,4的4个影厅选一个,可以多个工作人员进入同一个影厅,若所有5名工作人员的影厅编号之和恰为10,则不同的指派方法种数为( )
    A.91B.101C.111D.121
    例58.2019年实验中学要给三个班级补发8套教具,先将其分成3堆,其中一堆4个,另两堆每堆2个,一共有多少种不同分堆方法( )
    A.B.1
    2
    3
    4
    5
    6
    7
    8
    9
    C.D.
    例59.有本不同的书.
    (1)分给甲、乙、丙、丁四人,每人本,有几种分法?
    (2)若堆依次为本,本,本,本,有几种分法?
    (3)若平均分成堆,有几种方法(只要求列出算式)?
    例60.已知有6本不同的书.
    (1)分成三堆,每堆2本,有多少种不同的分堆方法?
    (2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?
    题型十二:分配问题
    例61.2022年北京冬奥会速度滑冰、花样滑冰、冰球三个项目竞赛中,甲,乙,丙,丁,戊五名同学各自选择一个项目开展志自愿者服务,则甲和乙均选择同一个项目,且三个项目都有人参加的不同方案总数是( )
    A.18B.27C.36D.48
    例62.现将5名志愿者全部分派到A、B、C三个居民小区参加抗击新冠病毒知识宣传,要求每个小区至少1人,志愿者甲安排到A小区,则不同的安排方法种数为( ).
    A.56B.50C.62D.36
    例63.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)
    例64.设有99本不同的书(用排列数、组合数作答).
    (1)分给甲、乙、丙3人,甲得96本,乙得2本,丙得1本,共有多少种不同的分法?
    (2)分给甲、乙、丙3人,甲得93本,乙、丙各得3本,共有多少种不同的分法?
    (3)平均分给甲、乙、丙3人,共有多少种不同的分法?(4)分给甲、乙、丙3人,一人得96本,一人得2本,一人得1本,共有多少种不同的分法?
    (5)分给甲、乙、丙3人,一人得93本,另两人各得3本,共有多少种不同的分法?
    (6)分成3份,一份96本,一份2本,一份1本,共有多少种不同的分法?
    (7)平均分成3份,共有多少种不同的分法?
    (8)分成3份,一份93本,另两份各3本,共有多少种不同的分法?
    例65.(1)个不同的小球放入编号为的个盒子中,一共有多少种不同的放法?
    (2)个不同的小球放入编号为的个盒子中,恰有个空盒的放法共有多少种?
    例66.将封信全部投入个邮筒:
    (1)不加任何限制,有多少种不同的投法?
    (2)每个邮筒至少投一封信,有多少种不同的投法?
    题型十三:隔板法
    例67.将9个志愿者名额全部分配给3个学校,则每校至少一个名额且各校名额互不相同的分配方法总数是( )
    A.16B.18C.27D.28
    例68.展开式为多项式,则其展开式经过合并同类项后的项数一共有( )
    A.12项B.24项C.39项D.78项
    例69.7个相同的小球放入,,三个盒子,每个盒子至少放一球,共有( )种不同的放法.
    A.60种B.36种C.30种D.15种
    例70.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为( )
    A.720种B.420种C.120种D.15种
    例71.方程的非负整数解有( )
    A.组B.136组C.190组D.68组
    例72.若方程,其中,则方程的正整数解的个数为
    A.10B.15C.20D.30
    题型十四:数字排列
    例73.(2022·重庆南开中学模拟预测)公元五世纪,数学家祖冲之估计圆周率的范围是:,为纪念祖冲之在圆周率方面的成就,把3.1415926称为“祖率”,这是中国数学的伟大成就.小明是个数学迷,他在设置手机的数字密码时,打算将圆周率的前6位数字3,1,4,1,5,9进行某种排列得到密码.如果排列时要求数字9不在最后一位,那么小明可以设置的不同密码有( )个.
    A.600B.300C.360D.180
    例74.(2022·河北·青龙满族自治县实验中学高三开学考试)用数字1,2,3,4组成没有重复数字的三位数,其中奇数的个数为( )A.6B.12C.16D.18
    例75.(2022·山西省长治市第二中学校高三阶段练习(理))若从1,2,3,…,9这9个整数中取出4个不同的数排成一排,依次记为a,b,c,d,则使得a×b×c+d为奇数的不同排列方法有( )
    A.1224B.1800C.1560D.840
    例76.(2022·全国·高三专题练习)数字“”中,各位数字相加和为,称该数为“长久四位数”,则用数字组成的无重复数字且大于的“长久四位数”有( )个
    A.B.
    C.D.
    例77.(2022·全国·高三专题练习)用数字、、组成五位数,且数字、、至少都出现一次,这样的五位数共有( )个
    A.B.C.D.
    例78.(2022·全国·高三专题练习)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )
    A.210个B.300个
    C.464个D.600个
    题型十五:几何问题
    例79.(2022·河南·鹤壁高中高三阶段练习(理))若一个正方体绕着某直线旋转不到一周后能与自身重合,那么这样的直线的条数为( )
    A.B.C.D.
    例80.以正方体的顶点为顶点的三棱锥的个数为( )
    A.70B.64C.60D.58
    例81.从正方体的8个顶点中选取4个作为顶点,可得到四面体的个数为( )
    A.B.C.D.
    例82.在正方体的个顶点中,以任意个顶点为顶点的三棱锥,共有( )
    A.个B.个C.个D.个
    例83.正方体,是棱的中点,在任意两个中点的连线中,与平面平行的直线有几条( )
    A.36B.21C.12D.6
    题型十六:分解法模型与最短路径问题
    例84.5400的正约数有( )个
    A.48B.46C.36D.38
    例85.有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?
    A.6B.8C.10D.12
    例86.如图,某城市中,、两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从到不同的走法共有
    A.10B.13C.15D.25
    例87.如图,蚂蚁从A沿着长方体的棱以
    的方向行走至B,不同的行走路线有
    A.6条B.7条C.8条D.9条
    例88.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的正方体的棱爬行至顶点,则它可以爬行的不同的最短路径有( )条
    A.40B.60C.80D.120
    例89.如图所示为某市各旅游景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为
    A.14B.15C.16D.17
    例90.如图,在某城市中,M,N两地之间有整齐的方格形道路网,其中,,,是道路网中位于一条对角线上的4个交汇处.今在道路网M,N处的甲、乙两人分别要到N,M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N,M处为止,则下列说法正确的有( )
    A.甲从M到达N处的走法种数为120
    B.甲从M必须经过到达N处的走法种数为9
    C.甲,两人能在处相遇的走法种数为36D.甲,乙两人能相遇的走法种数为164
    题型十七:排队问题
    例91.4个男同学,3个女同学站成一排.
    (1)3个女同学必须相邻,有多少种不同的排法?
    (2)任何两个女同学彼此不相邻,有多少种不同的排法?
    (3)3个女同学站在中间三个位置上的不同排法有多少种?
    (4)其中甲、乙两人相邻,但都不与丙相邻,则有多少种不同的排法?
    (5)若3个女同学身高互不相等,女同学从左到右按高矮顺序排,有多少种不同的排法?
    例92.在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)
    (1)三名女生不能相邻,有多少种不同的站法?
    (2)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?
    (3)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)
    (4)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?
    例93.在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)
    (1)三名女生不能相邻,有多少种不同的站法?
    (2)四名男生相邻有多少种不同的排法?
    (3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?
    (4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)
    (5)从中选出2名男生和2名女生表演分四个不同角色朗诵,有多少种选派方法?
    (6)现在有7个座位连成一排,仅安排4个男生就坐,恰好有两个空座位相邻的不同坐法共有多少种?
    题型十八:构造法模型和递推模型
    例94.贾同学、王同学、文同学三人在操场踢球,每次传球,传球者将球随机将传给另外两位同学之一,足球最开始在文同学脚下,则:①次传球之后,共有___________种可能的传球方法;②次传球之后,足球回到文同学脚下的传球方法有___________种.
    例95.一只蚂蚁从一个正四面体的顶点出发,每次从一个顶点爬行到另一个顶点,则蚂蚁爬行五次还在点的爬行方法种数是__________.
    例96.把圆分成个不相等的扇形,并且用红、黄、蓝三种颜色给扇形染色,但不允许相邻的扇形有相同的颜色,问共有多少种染色法?
    例97.(1)求方程的非负整数解的组数;
    (2)某火车站共设有4个安检入口,每个入口每次只能进入1位乘客,求一个4人小组进站的不同方案种数.
    题型十九:环排问题
    例98.21个人按照以下规则表演节目:他们围坐成一圈,按顺序从1到3循环报数,报数字“3”的人出来表演节目,并且表演过的人不再参加报数.那么在仅剩两个人没有表演过节目的时候,共报数的次数为
    A.19B.38C.51D.57
    例99.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有( )
    A.60种B.48种C.30种D.24种
    例100.现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有( ).
    A.6种B.8种C.12种D.16种
    例101.5个女孩与6个男孩围成一圈,任意2个女孩中间至少站1个男孩,则不同排法有______种(填数字).
    【过关测试】
    一、单选题
    1.(2022·甘肃白银·高三开学考试(理))6名志愿者要到,,三个社区进行志愿服务,每个志愿者只去一个社区,每个社区至少安排1名志愿者,若要2名志愿者去社区,则不同的安排方法共有( )
    A.105种B.144种C.150种D.210种
    2.(2022·江西·南昌二中高三开学考试(理))2022年3月中旬,新冠肺炎疫情突袭南昌,南昌市统一指挥,多方携手、众志成城,构筑起抗击疫情的坚固堡垒.某小区有小王、小张等5位中学生积极参加社区志愿者,他们被分派到测温和扫码两个小组,若小王和小张不同组,且他们所在的两个组都至少需要2名中学生志愿者,则不同的分配方案种数有( )
    A.8B.10C.12D.14
    3.(2022·全国·高三专题练习)用红、黄、蓝3种颜色给如图所示的6个相连的圆涂色,若每种颜色只能涂2个圆,且相邻2个圆所涂颜色不能相同,则不同的涂法种数为( )
    A.24B.30C.36D.42
    4.(2022·全国·高三专题练习)甲乙丙丁四个同学星期天选择到东湖公园,西湖茶经楼,历史博物馆和北湖公园其中一处去参观游玩,其中茶经楼必有人去,则不同的参观方式共有( )种.
    A.24B.96C.174D.175
    5.(2022·全国·高三专题练习)若分配甲、乙、丙、丁四个人到三个不同的社区做志愿者,每个社区至少分配一人,每人只能去一个社区.若甲分配的社区已经确定,则乙与甲分配到不同社区的概率是( )
    A.B.C.D.
    6.(2022·全国·高三专题练习)近日,各地有序开展新冠疫苗加强针接种工作,某社区疫苗接种点为了更好的服务市民,决定增派5名医务工作者参加登记、接种、留观3项工作,每人参加1项,接种工作至少需要2人参加,登记、留观至少1人参加,则不同的安排方式有( )
    A.50B.80C.140D.180
    7.(2022·全国·高三专题练习)将6个不同的乒乓球全部放入两个不同的球袋中,每个球袋中至少放1个,则不同的放法有( )
    A.82种B.62种C.112种D.84种
    8.(2022·四川省成都市第八中学校高三阶段练习(理))甲、乙、丙等七人相约到电影院看电影《长津湖》,恰好买到了七张连号的电影票,若甲、乙两人必须相邻,且丙坐在七人的正中间,则不同的坐法的种数为( )
    A.240B.192C.96D.48
    9.(2022·安徽·合肥一中模拟预测(理))某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有( )
    A.48B.54C.60D.72
    二、多选题
    10.(2022·全国·高三专题练习)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼” “乐” “射” “御” “书” “数”六门体验课程,每周一门,连续开设六周,则( )
    A.某学生从中选3门,共有30种选法
    B.课程“射”“御”排在不相邻两周,共有240种排法
    C.课程“礼”“乐”“数”排在相邻三周,共有144种排法
    D.课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法
    11.(2022·全国·高三专题练习)如图,用4种不同的颜色,对四边形中的四个区域进行着色,要求有公共边的两个区域不能用同一种颜色,则不同的着色方法数为( )
    A.B.
    C.D.
    12.(2022·全国·高三专题练习)将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子,下列结果正确的有( )
    A.B. C.D.18
    13.(2022·全国·高三专题练习)为响应政府部门疫情防控号召,某红十字会安排甲、乙、丙、丁4名志愿者奔赴,,三地参加防控工作,则下列说法正确的是( )
    A.不同的安排方法共有64种
    B.若恰有一地无人去,则不同的安排方法共有42种
    C.若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有44种
    D.若该红十字会又计划为这三地捐赠20辆救护车(救护车相同),且每地至少安排一辆,则不同的安排方法共有171种
    14.(2022·全国·高三专题练习)现安排甲、乙、丙、丁、戊5名同学参加2022年杭州亚运会志愿者服务活动,有翻译、导游、礼仪、司机四项工作可以安排,则以下说法错误的是( )
    A.若每人都安排一项工作,则不同的方法数为
    B.若每项工作至少有1人参加,则不同的方法数为C.每项工作至少有1人参加,甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是
    D.如果司机工作不安排,其余三项工作至少安排1人,则这5名同学全部被安排的不同方法数为
    三、填空题
    15.(2022·湖北孝感·高三阶段练习)甲、乙、丙三名志愿者需要完成A,B,C,D,E五项不同的工作,每项工作由一人完成,每人至少完成一项,且E工作只有乙能完成,则不同的安排方式有______种.
    16.(2022·全国·高三专题练习(理))志愿团安排去甲、乙、丙、丁四个精准扶贫点慰问的先后顺序,一位志愿者说:不能先去甲,甲的困难户最多;另一位志愿者说:不能最后去丁,丁离得最远.他们共有多少种不同的安排方法____
    17.(2022·河南·模拟预测(理))将中国古代四大名著——《红楼梦》《西游记》《水浒传》《三国演义》,以及《诗经》等12本书按照如图所示的方式摆放,其中四大名著要求放在一起,且必须竖放,《诗经》《楚辞》《吕氏春秋》要求横放,若这12本书中7本竖放5本横放,则不同的摆放方法共有___________种.
    18.(2022·全国·高三专题练习)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)
    19.(2022·四川省仁寿县铧强中学高三开学考试(理))5位学生被分配到3个志愿点作志愿者,每个志愿点至少分配一位学生,其中甲乙不能分配到同一个志愿点,则共有___________种不同的分配方式(用数字作答).
    20.(2022·四川·成都七中三模(理))有甲、乙、丙三项任务,甲、乙各需1人承担,丙需2人承担且至少1人是男生,现有2男2女共4名学生承担这三项任务,不同的安排方法种数是______.(用具体数字作答)

    相关试卷

    最新高考数学二轮复习讲义【讲通练透】 专题42 计数原理:

    这是一份最新高考数学二轮复习讲义【讲通练透】 专题42 计数原理,文件包含专题42计数原理教师版docx、专题42计数原理学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    最新高考数学二轮复习讲义【讲通练透】 专题35 圆的方程:

    这是一份最新高考数学二轮复习讲义【讲通练透】 专题35 圆的方程,文件包含专题35圆的方程教师版docx、专题35圆的方程学生版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    最新高考数学二轮复习讲义【讲通练透】 专题27 数列求和:

    这是一份最新高考数学二轮复习讲义【讲通练透】 专题27 数列求和,文件包含专题27数列求和教师版docx、专题27数列求和学生版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map