全国各地中考数学试卷分类汇编:直角三角形与勾股定理
展开
这是一份全国各地中考数学试卷分类汇编:直角三角形与勾股定理,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.(2013贵州安顺,6,3分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )
A.8米 B.10米 C.12米 D.14米
【答案】:B.
【解析】如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,
在Rt△AEC中,AC==10m.
【方法指导】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
2.[2013山东菏泽,7,3分]如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( )
A.16 B.17 C.18 D.19
【答案】B.
【解析】根据等腰直角三角形、勾股定理先求出面积分别为S1的边唱是大正方形对角线的 SKIPIF 1 < 0 ,S2正方形的边长组成直角三角形斜边长是大正方形对角线的一半.
满分解答:边长为6的大正方形中,对角线长为 SKIPIF 1 < 0 .
∴面积为S1小正方边长为 SKIPIF 1 < 0 ,面积S1==8;小正方S2= SKIPIF 1 < 0 ,∴S1+S2=8+9=17.故选B.
【方法指导】本题主要考查正方形性质.熟悉正方形有关性质是解题的关键.
3.(2013四川泸州,12,2分)如图,在等腰直角中,,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且,DE交OC于点P.则下列结论:
(1)图形中全等的三角形只有两对;
(2)的面积等于四边形CDOE面积的2倍;
(3);
(4).其中正确的结论有( )
A. 1个 B.2个 C.3个 D.4个
【答案】C
【解析】结论(1)错误,结论(2)(3)(4)正确.
【方法指导】本题是几何综合题,考查了等腰直角三角形、全等三角形、相似三角形和勾股定理等重要几何知识点.难点在于结论(4)的判断,其中对于“OP•OC”线段乘积的形式,可以寻求相似三角形解决问题.
4.(2013年佛山市, 7,3分)如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)( )
A.34.64m B.34.6m C.28.3m D.17.3m
分析:首先计算出∠B的度数,再根据直角三角形的性质可得AB=40m,再利用勾股定理计算出BC长即可
解:∵∠A=60°,∠C=90°,∴∠B=30°,∴AB=2AC,∵AC=20m,∴AB=40m,
∴BC====20≈34.6(m),故选:B.
点评:此题主要考查了勾股定理,以及直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方
5.(2013贵州安顺,6,3分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )
A.8米B.10米C.12米D.14米
考点:勾股定理的应用.
专题:应用题.
分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
解答:解:如图,设大树高为AB=10m,
小树高为CD=4m,
过C点作CE⊥AB于E,则EBDC是矩形,
连接AC,
∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,
在Rt△AEC中,AC==10m,
故选B.
点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
6. (2013江苏南京,3,2分) 设边长为3的正方形的对角线长为a,下列关于a的四种说法: a是无理数; a可以用数轴上的一个点来表示; 3
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之规律探究题(含解析),共25页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
这是一份2023年全国各地中考数学真题分类汇编之等腰三角形与直角三角形(含解析),共60页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年全国各地中考数学真题分类汇编之整式及其运算,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。