所属成套资源:2024年高考数学一轮复习课件+讲义+练习(新教材新高考)
第08讲 两点分布、二项分布、超几何分布与正态分布(十一大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考)
展开这是一份第08讲 两点分布、二项分布、超几何分布与正态分布(十一大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考),共41页。PPT课件主要包含了高考数学一轮复习策略,考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
第08讲 两点分布、二项分布、超几何分布与正态分布
知识梳理 题型归纳
一、二项分布1.伯努利试验只包含 可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为 .
2.二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0二、超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
P(X=k)=________,k=m,m+1,m+2,…,r,其中,n,N,M∈N*,
三、正态分布1.定义若随机变量X的概率分布密度函数为f(x)= ,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为 .2.正态曲线的特点(1)曲线是单峰的,它关于直线 对称;(2)曲线在 处达到峰值 ;(3)当|x|无限增大时,曲线无限接近x轴.
3.3σ原则(1)P(μ-σ≤X≤μ+σ)≈0.682 7;(2)P(μ-2σ≤X≤μ+2σ)≈0.954 5;(3)P(μ-3σ≤X≤μ+3σ)≈0.997 3.4.正态分布的均值与方差若X~N(μ,σ2),则E(X)= ,D(X)= .
1.两点分布是二项分布当n=1时的特殊情形.2.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.3.在实际应用中,往往出现数量“较大”“很大”“非常大”等字眼,这表明试验可视为n重伯努利试验,进而判定是否服从二项分布.4.超几何分布有时也记为 X~H(n,M,N),其均值E(X)= ,
D(X)= .
【例4】(2023·上海浦东新·高三上海市建平中学校考阶段练习)莫高窟坐落在甘肃的敦煌,它是世界上现存规模最大、内容最丰富的佛教艺术胜地,每年都会吸引来自世界各地的游客参观旅游.已知购买莫高窟正常参观套票可以参观8个开放洞窟,在这8个洞窟中莫高窟九层楼96号窟、莫高窟三层楼16号窟、藏经洞17号窟被誉为最值得参观的洞窟.根据疫情防控的需要,莫高窟改为极速参观模式,游客需从套票包含的开放洞窟中随机选择4个进行参观,所有选择中至少包含2个最值得参观洞窟的概率是 .
题型五:二项分布与超几何分布的综合应用
【对点训练6】(2023·河南信阳·高三河南宋基信阳实验中学校考开学考试)某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( )A.甲学科总体的均值最小B.乙学科总体的方差及均值都居中C.丙学科总体的方差最大D.甲、乙、丙的总体的均值不相同
【答案】C【解析】由题中图象可知三科总体的平均数(均值)相等由正态密度曲线的性质,可知σ越大,正态曲线越扁平,σ越小,正态曲线越尖陡,故三科总体的标准差从小到大依次为甲、乙、丙.故选:C.
题型七:正态曲线的性质
题型八:正态曲线概率的计算
题型九:根据正态曲线的对称性求参数
题型十:正态分布的实际应用
【对点训练10】(2023·广东江门·高三统考阶段练习)为深入学习党的二十大精神,某学校团委组织了“青 春向党百年路,奋进学习二十大”知识竞赛活动,并从 中抽取了200 份试卷进行调查,这200 份试卷的成绩(卷 面共100分)频率分布直方图如右图所示.(1)用样本估计总体,求此次知识竞赛的平均分(同一组中的数据用该组区间的中点值为代表).(2)可以认为这次竞赛成绩 X 近似地服从正态分布 N,2 (用样本平均数和标准差 s 分别作为 、 的近似值),已知样本标准差 s 7.36 ,如有84%的学生的竞赛 成绩高于学校期望的平均分,则学校期望的平均分约为多少?(结果取整数)参考数据:若 X ~N ,2 ,则 P X 0.68 ,P 2 X 2 0.95 , P 3 X 3 0.99 .
题型十一:标准正态分布的应用
相关课件
这是一份新高考数学一轮复习讲练测课件第10章§10.7二项分布、超几何分布与正态分布 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,n重伯努利试验,X~Bnp,p1-p,np1-p,X~Nμσ2,x=μ,所以X的分布列为等内容,欢迎下载使用。
这是一份高考数学一轮复习第10章第7节二项分布、超几何分布与正态分布课件,共58页。PPT课件主要包含了伯努利试验,二项分布,正态密度曲线,√××,考点1考点2考点3等内容,欢迎下载使用。
这是一份高考复习 10.6 二项分布、超几何分布与正态分布课件PPT,共39页。PPT课件主要包含了n重伯努利试验,X~Bnp,np1-p,x=μ,X~Nμσ2,答案A,答案B,答案D等内容,欢迎下载使用。