第06讲 双曲线及其性质(十大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考)
展开1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
第06讲 双曲线及其性质
知识梳理 题型归纳
1.双曲线的定义把平面内与两个定点F1,F2的距离的差的 等于非零常数( |F1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的 ,两焦点间的距离叫做双曲线的 .
2.双曲线的标准方程和简单几何性质
F1(-c,0),F2(c,0)
F1(0,-c),F2(0,c)
A1(-a,0),A2(a,0)
A1(0,-a),A2(0,a)
(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c-a.(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为 .
(4)若P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则 = ,其中θ为∠F1PF2.(5)与双曲线 (a>0,b>0)有共同渐近线的方程可表示为 (t≠0).
题型一:双曲线的定义与标准方程
题型二:双曲线方程的充要条件
题型三:双曲线中焦点三角形的周长与面积及其他问题
题型四:双曲线上两点距离的最值问题
题型五:双曲线上两线段的和差最值问题
题型六:离心率的值及取值范围 方向1:利用双曲线定义去转换
题型六:离心率的值及取值范围 方向4:坐标法
题型六:离心率的值及取值范围 方向5:找几何关系,利用余弦定理
题型六:离心率的值及取值范围 方向6:找几何关系,利用正弦定理
题型六:离心率的值及取值范围 方向7:利用基本不等式
题型六:离心率的值及取值范围 方向8:利用渐近线的斜率求离心率
题型六:离心率的值及取值范围 方向9:利用双曲线第三定义
题型七:双曲线的简单几何性质问题
题型八:利用第一定义求解轨迹
【解题方法总结】常见考题中,会让我们利用圆锥曲线的定义求解点P的轨迹方程,这时候要注意把动点P和满足焦点标志的定点连起来做判断.焦点往往有以下的特征:(1)关于坐标轴对称的点;(2)标记为F的点;(3)圆心;(4)题上提到的定点等等.当看到满足以上的标志的时候要想到曲线的定义,把曲线和满足焦点特征的点连起来结合曲线定义判断.注意:在求解轨迹方程的题中,要注意x和y的取值范围.
题型九:双曲线的渐近线
题型十:共焦点的椭圆与双曲线
第05讲 椭圆及其性质(八大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考): 这是一份第05讲 椭圆及其性质(八大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考),共53页。PPT课件主要包含了高考数学一轮复习策略,考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
第03讲+三角函数的图象与性质(十大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考): 这是一份第03讲+三角函数的图象与性质(十大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考),共51页。PPT课件主要包含了高考数学一轮复习策略,考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。
第02讲 等差数列及其前n项和(十大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考): 这是一份第02讲 等差数列及其前n项和(十大题型)(课件)-2024年高考数学一轮复习课件(新教材新高考),共42页。PPT课件主要包含了高考数学一轮复习策略,考情分析,网络构建,知识梳理题型归纳,真题感悟,PARTONE等内容,欢迎下载使用。