![17.1 勾股定理 第1课时 勾股定理导学案第1页](http://m.enxinlong.com/img-preview/2/3/15541762/0-1711447540581/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版八年级下册数学导学案全册
数学人教版17.1 勾股定理第1课时学案
展开
这是一份数学人教版17.1 勾股定理第1课时学案,共3页。学案主要包含了导学,自学,助学,强化,评价等内容,欢迎下载使用。
第1课时 勾股定理
一、导学
1.导入课题
在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦,并探索出了勾、股、弦之间的关系(即直角三角形三边之间的关系),这种关系是怎样的关系呢?又把这种关系叫做什么呢?
2.学习目标
(1)了解勾股定理的文化背景,了解常见的利用拼图验证勾股定理的方法.
(2)知道勾股定理的内容.
3.学习重、难点
重点:勾股定理内容的条件与结论.
难点:勾股定理的几何验证方法.
4.自学指导
(1)自学内容:探究:直角三角形三边之间存在怎样的等量关系.
(2)自学时间:10分钟.
(3)自学方法:结合探究提纲动手拼图,思考面积关系.
(4)探究提纲:
①投影家中地板砖铺成的地面图案,并框定某一个直角三角形.
a.右图中正方形ABFG、正方形ACDE和正方形BMNC的面积之间有何关系?
b.如果设AB=a,AC=b,BC=c,那么由a.可得到a2+b2=c2.
c.猜想:直角三角形两直角边的平方和等于斜边的平方.
②根据下面拼图,验证猜想的正确性.
拼成的正方形面积等于4个直角三角形
面积+小正方形面积,即,化简得 .
二、自学
结合探究提纲进行自学.
三、助学
1.师助生:
(1)明了学情:了解学生探究中存在的问题.
(2)差异指导:指导学生运用面积法找到等量关系.
2.生助生:同桌之间相互研讨,帮助解决疑难.
四、强化
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.
2.如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
五、评价
1.学生的自我评价:小组学生代表介绍自己的学习方法、收获和疑惑.
2.教师对学生的评价:
(1)表现性评价:点评学生在课堂学习中的态度、合作探究的成绩和不足.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思).
本节课通过向学生介绍勾股定理的悠久历史,让学生了解古代劳动人民在数学方面的成就,感受数学文化是人类文化的重要组成部分.本节课教学应把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流;另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,从而教给学生探求知识的方法,教会学生获取知识的本领.
(时间:12分钟满分:100分)
一、基础巩固(60分)
1.(15分)在Rt△ABC中,两直角边长分别为3和,则斜边长为.
2.(15分)在Rt△ABC中,若斜边长为,一条直角边的长为2,则另一条直角边的长为1.
3.(10分)在Rt△ABC中,∠C=90°,a=6,c=10,则b=8.
4.(20分)在Rt△ABC中,∠C=90°.
(1)已知c=25,b=15,求a;
(2)已知a=,∠A=60°,求b,c.
二、综合运用(20分)
5.已知直角三角形的两边长分别为3,2,求另一条边长.
解:当斜边的长为3时,另一条边长;
当两条直角边长分别为3、2时,斜边长 .
三、拓展延伸(20分)
6.如图,已知长方形ABCD沿直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,求DE的长.
解:∵∠A=∠C′=∠C=90°,∠AEB=∠C′ED,AB=C′D,∴△AEB≌△C′ED.∴AE=C′E,
∴C′E=AD-ED=8-ED.又在 中,
∴.
相关学案
这是一份初中数学人教版八年级下册17.1 勾股定理优秀第1课时导学案及答案,共5页。
这是一份初中数学17.1 勾股定理第1课时导学案,共6页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册第十七章 勾股定理17.1 勾股定理第1课时学案设计,共4页。学案主要包含了知识回顾,课堂小结等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)