【考前50天】最新高考数学重点专题三轮冲刺演练 专题12 立体几何小题 (基础版)
展开
这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题12 立体几何小题 (基础版),文件包含专题12立体几何小题基础练原卷版docx、专题12立体几何小题基础练解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
1、多加总结。当三年所有的数学知识点加在一起,可能会使有些基础不牢固的学生犯迷糊。
2、做题经验。哪怕同一题只改变数字,也能成为一道新的题目。
3、多刷错题。多刷错题能够进一步地扫清知识盲区,多加巩固之后自然也就掌握了知识点。
对于学生来说,三轮复习就相当于是最后的“救命稻草”,家长们同样是这样,不要老是去责怪孩子考试成绩不佳,相反,更多的来说,如果能够陪同孩子去反思成绩不佳的原因,找到问题的症结所在,更加重要。
【一专三练】 专题12 立体几何小题基础练-新高考数学复习分层训练(新高考通用)
一、单选题
1.(2023·广东·统考一模)已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为( )
A.B.C.D.
2.(2023·山东济南·一模)已知正三角形边长为2,用斜二测画法画出该三角形的直观图,则所得直观图的面积为( )
A.B.C.D.
3.(2023·广东惠州·统考模拟预测)已知互不重合的三个平面α、β、γ,其中,,,且,则下列结论一定成立的是( )
A.b与c是异面直线B.a与c没有公共点
C.D.
4.(2023·浙江嘉兴·统考模拟预测)《九章算术·商功》中记载:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑,不易之率也.”我们可以翻译为:取一长方体,分成两个一模一样的直三棱柱,称为堑堵.再沿堑堵的一顶点与相对的棱剖开,得一个四棱锥和一个三棱锥,这个四棱锥称为阳马,这个三棱锥称为鳖臑.现已知某个鳖臑的体积是1,则原长方体的体积是( )
A.8B.6C.4D.3
5.(2023·辽宁阜新·校考模拟预测)已知矩形ABCD中,AB=8,取AB、CD的中点E、F,沿直线EF进行翻折,使得二面角的大小为120°,若翻折后A、B、C、D、E、F都在球上,且球的体积为,则AD=( )
A.B.C.D.
6.(2023·山东日照·统考一模)红灯笼,起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分.如图2,球冠是由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球面的半径为,球冠的高为,则球冠的面积.如图1,已知该灯笼的高为58cm,圆柱的高为5cm,圆柱的底面圆直径为14cm,则围成该灯笼中间球面部分所需布料的面积为( )
A.B.C.D.
7.(2023·山东·烟台二中校考模拟预测)已知圆锥的侧面积为,高为,若圆锥可在某球内自由运动,则该球的体积最小值为( )
A.B.C.D.
8.(2023·山东威海·统考一模)已知圆锥的侧面展开图是一个半径为4,弧长为的扇形,则该圆锥的表面积为( )
A.B.C.D.
9.(2023·山东聊城·统考一模)在正方体中,直线、分别在平面和,且,则下列命题中正确的是( )
A.若垂直于,则垂直于B.若垂直于,则不垂直于
C.若不垂直于,则垂直于D.若不垂直于,则不垂直于
10.(2023·江苏徐州·徐州市第七中学校考一模)则三棱锥中,平面,则三棱锥的外接球半径为( )
A.3B.C.D.6
11.(2023·湖北武汉·统考模拟预测)某车间需要对一个圆柱形工件进行加工,该工件底面半径15cm,高10cm,加工方法为在底面中心处打一个半径为rcm且和原工件有相同轴的圆柱形通孔.若要求工件加工后的表面积最大,则r的值应设计为( )
A. B. C.4D.5
12.(2023·湖北·统考模拟预测)截角四面体是一种半正八面体,可由四面体经过适当的截角而得到.如图,将棱长为6的正四面体沿棱的三等分点作平行于底面的截面截角得到所有棱长均为2的截角四面体,则该截角四面体的体积为( )
A.B.C.D.
13.(2023·湖北·荆州中学校联考二模)甲、乙两个圆锥的底面积相等,侧面展开图的圆心角之和为,侧面积分别为、,体积分别为、,若,则等于( )
A.B.C.D.
14.(2023·湖南湘潭·统考二模)已知为球球面上的三个点,若,球的表面积为,则三棱锥的体积为( )
A.B.C.D.
15.(2023·湖南·湖南师大附中校联考模拟预测)如图所示,一个球内接圆台,已知圆台上、下底面的半径分别为3和4,球的表面积为,则该圆台的体积为( )
A.B.C.D.
16.(2023·广东茂名·统考一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m;上半部分近似一个与下半部分同底的圆锥,其母线长为m,轴截面(过圆锥旋转轴的截面)是面积为的等腰钝角三角形,则该蒙古包的体积约为( )
A.B.C.D.
17.(2023·广东茂名·统考一模)已知菱形ABCD的各边长为2,.将沿AC折起,折起后记点B为P,连接PD,得到三棱锥,如图所示,当三棱锥的表面积最大时,三棱锥的外接球体积为( )
A.B.C.D.
18.(2023·江苏·统考一模)已知正四面体的棱长为1,点O为底面的中心,球О与该正四面体的其余三个面都有且只有一个公共点,且公共点非该正四面体的顶点,则球O的半径为( )
A.B.C.D.
二、多选题
19.(2023·浙江·统考一模)已知三棱柱的棱长均相等,则( )
A.B.
C.D.
20.(2023·江苏泰州·统考一模)在棱长为2的正方体中,与交于点,则( )
A.平面
B.平面
C.与平面所成的角为
D.三棱锥的体积为
21.(2023·辽宁葫芦岛·统考一模)已知a,b为空间中两条不同直线,,为空间中两个不同的平面,则下列命题一定成立的是( )
A.,,
B.,,
C.,,
D.,,
22.(2023·江苏南通·统考模拟预测)已知点P是正方体侧面(包含边界)上一点,下列说法正确的是( )
A.存在唯一一点P,使得
B.存在唯一一点P,使得面
C.存在唯一一点P,使得⊥
D.存在唯一一点P,使得⊥面
23.(2023·山东青岛·统考一模)下列说法正确的是( )
A.若直线a不平行于平面,,则内不存在与a平行的直线
B.若一个平面内两条不平行的直线都平行于另一个平面,则
C.设l,m,n为直线,m,n在平面内,则“”是“且”的充要条件
D.若平面平面,平面平面,则平面与平面所成的二面角和平面与平面所成的二面角相等或互补
24.(2023·湖南常德·统考一模)已知平面α,β,直线l,m,则下列命题正确的是( )
A.若,,则
B.若,,则
C.若,则“”是“”的充分不必要条件
D.若,,则“”是“”的必要不充分条件
25.(2023·广东茂名·统考一模)已知空间中三条不同的直线a、b、c,三个不同的平面,则下列说法中正确的是( )
A.若,,则
B.若,,,则
C.若,,,则
D.若,,则
三、填空题
26.(2023·江苏南通·校联考模拟预测)中国某些地方举行婚礼时要在吉利方位放一张桌子,桌子上放一个装满粮食的升斗,斗面用红纸糊住,斗内再插一杆秤、一把尺子,寓意粮食满园、称心如意、十全十美,下图为一种婚庆升斗的规格,该升斗外形是一个正四棱台,上、下底边边长分别为,,侧棱长为,忽略其壁厚,则该升斗的容积为_________.
27.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)在直角梯形中,,,,E为的中点.将和分别沿折起,使得点A,D重合于点F,构成四面体.若四面体的四个面均为直角三角形,则其外接球的半径为_________.
28.(2023·山东·烟台二中校联考模拟预测)已知在正方体中,,平面平面,则直线l与所成角的余弦值为__________.
29.(2023·湖北·校联考模拟预测)葫芦是一种爬藤植物,在我国传统文化中,其枝密集繁茂,象征着儿孙满堂、同气连枝;其音近于“福禄”,寓意着长寿多福、事业发达;其果口小肚大,代表着心胸开阔、和谐美满.如图,一个葫芦的果实可以近似看做两球相交所得的几何体,其中的下半部分是半径为的球的一部分,的上半部分是半径为3的球的一部分,且,则过直线的平面截所得截面的面积为__________.
30.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知圆台的侧面积与轴截面的面积之比为,若上、下底面的半径分别为1和2,则母线长为__________.
相关试卷
这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题11 数列小题 (压轴版),文件包含专题11数列小题压轴练原卷版docx、专题11数列小题压轴练解析版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题11 数列小题 (基础版),文件包含专题11数列小题基础练原卷版docx、专题11数列小题基础练解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份【考前50天】最新高考数学重点专题三轮冲刺演练 专题11 数列小题 (拔高版),文件包含专题11数列小题拔高练原卷版docx、专题11数列小题拔高练解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。