|试卷下载
搜索
    上传资料 赚现金
    2024广西部分学校高一下学期开学考试数学含解析
    立即下载
    加入资料篮
    2024广西部分学校高一下学期开学考试数学含解析01
    2024广西部分学校高一下学期开学考试数学含解析02
    2024广西部分学校高一下学期开学考试数学含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024广西部分学校高一下学期开学考试数学含解析

    展开
    这是一份2024广西部分学校高一下学期开学考试数学含解析,共17页。试卷主要包含了本试卷主要考试内容, 已知,则, 已知,,且,则的最小值是等内容,欢迎下载使用。

    注意事项:
    1.答题前,考生务必将自已的姓名、考生号、考场号、座位号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    4.本试卷主要考试内容:北师大版必修第一册,必修第二册第一章第1节至第5节.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 下列各角中,与的终边相同的是( )
    A. B. C. D.
    2. 已知集合,则( )
    A. B. C. D.
    3. 设,则( )
    A. B.
    C. D.
    4. 某人用手机记录了他连续10周每周的走路里程(单位:公里),其数据分别为,,则这组数据的分位数是( )
    A. 7B. 12C. 13D. 14
    5. 已知,则( )
    A. B.
    C. D.
    6. 已知,,且,则的最小值是( )
    A. B. C. D.
    7. 已知甲袋中有标号分别为的四个小球,乙袋中有标号分别为的四个小球,这些球除标号外完全相同,第一次从甲袋中取出一个小球,第二次从乙袋中取出一个小球,事件表示“第一次取出的小球标号为3”,事件表示“第二次取出的小球标号为偶数”,事件表示“两次取出的小球标号之和为7”,事件表示“两次取出的小球标号之和为偶数”,则( )
    A. 与相互独立B. 与是对立事件
    C. 与是对立事件D. 与相互独立
    8. 已知函数在上有且只有一个最大值点(即取得最大值对应的自变量),则的取值范围是( )
    A. B. C. D.
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 已知角的终边经过点,则下列结论正确的是( )
    A 若,则
    B. 若,则
    C. 若,则
    D. 若,则
    10. 已知是定义在上的函数,,且,则( )
    A.
    B. 是偶函数
    C. 的最小值是1
    D. 不等式的解集是
    11. 某班语文老师对该班甲、乙、丙、丁4名同学连续7周每周阅读的天数(每周阅读天数可以是)进行统计,根据统计所得数据对这4名同学这7周每周的阅读天数分别做了如下描述:
    甲:中位数为3,众数为5;
    乙:中位数为4,极差为3;
    丙:中位数为4,平均数为3;
    丁:平均数为3,方差为3.
    那么可以判断一周阅读天数一定没有出现7天的是( )
    A. 甲B. 乙C. 丙D. 丁
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 甲、乙两人下象棋,已知甲获胜概率是,平局的概率是,则乙获胜的概率是__________.
    13. 一扇环形砖雕如图所示,该扇环形砖雕可视为扇形截去同心扇形所得的部分,已知分米,弧长为分米,弧长为分米,则______分米,此扇环形砖雕的面积为______平方分米.
    14. 已知是上的单调函数,则的取值范围是__________.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 某环保小组共有5名成员,其中男成员有2人,现从这5人中随机选出3人去某社区进行环保宣传.
    (1)求所选的3人中恰有1名男成员的概率;
    (2)求所选的3人中至少有2名女成员的概率.
    16. 已知函数.
    (1)求单调递增区间;
    (2)求在上的值域.
    17. 某校为了解该校高三年级学生的物理成绩,从某次高三年级物理测试中随机抽取名男生和名女生的测试试卷,记录其物理成绩(单位:分),得到如下数据:
    名男生的物理成绩分别为、、、、、、、、、、、;
    名女生的物理成绩分别为、、、、、、、.
    (1)求这名男生物理成绩平均分与方差;
    (2)经计算得这名女生物理成绩平均分,方差,求这名学生物理成绩的平均分与方差.
    附:分层随机抽样的方差公式:,表示第层所占的比例.
    18. 已知定义在上的奇函数.
    (1)求的值;
    (2)证明:在上单调递增;
    (3)若对任意的,都有,求的最大值.
    19. 已知函数.
    (1)求的解析式;
    (2)求不等式的解集;
    (3)若存在,使得,求的取值范围.
    高一年级2024年春季学期入学联合检测卷
    数学
    注意事项:
    1.答题前,考生务必将自已的姓名、考生号、考场号、座位号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    4.本试卷主要考试内容:北师大版必修第一册,必修第二册第一章第1节至第5节.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 下列各角中,与的终边相同的是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】利用终边相同的角的概念即可求出.
    【详解】因为,所以与的终边相同,其他选项经检验不合题意.
    故选:C
    2. 已知集合,则( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】先化简集合A,再求交集.
    【详解】由题意可得,则.
    故选:A
    3. 设,则( )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】由已知条件和不等式的性质,分别判断各选项中的结论是否正确.
    【详解】因,所以,则,则A选项错误;
    因为,所以,又0,则,即,所以,即,则B选项正确;
    当时,,则C选项错误;
    因为,由B选项可知,所以,则D选项错误.
    故选:B
    4. 某人用手机记录了他连续10周每周的走路里程(单位:公里),其数据分别为,,则这组数据的分位数是( )
    A. 7B. 12C. 13D. 14
    【答案】C
    【解析】
    【分析】先将数据按从小到大顺序排列,再利用百分位计算.
    【详解】将这组数据按从小到大的顺序排列为.
    因为,
    则这组数据的分位数是这组数据中的第6个和第7个数据的平均数,即.
    故选:C.
    5. 已知,则( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】根据指数函数、对数函数、余弦函数的性质,结合中间量即可比较大小.
    【详解】因为,
    所以.
    故选:D.
    6. 已知,,且,则的最小值是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】由题干等式变形得出,可得出,将代数式与相乘,展开后利用基本不等式可求得的最小值.
    【详解】因为且,,所以,
    则,
    当且仅当时,即当,时,等号成立.
    因此,的最小值是.
    故选:C.
    7. 已知甲袋中有标号分别为的四个小球,乙袋中有标号分别为的四个小球,这些球除标号外完全相同,第一次从甲袋中取出一个小球,第二次从乙袋中取出一个小球,事件表示“第一次取出的小球标号为3”,事件表示“第二次取出的小球标号为偶数”,事件表示“两次取出的小球标号之和为7”,事件表示“两次取出的小球标号之和为偶数”,则( )
    A. 与相互独立B. 与是对立事件
    C. 与是对立事件D. 与相互独立
    【答案】D
    【解析】
    【分析】利用互斥,对立,独立事件的定义逐项判断即可.
    【详解】由题意可得基本事件总数为,



    由题意可得与可以同时发生,故不是对立事件,
    易知与不同时发生,为互斥事件,但不是对立事件,比如还可以有发生,则错误.

    则,
    从而与不相互独立,与相互独立,故A错误,D正确.
    故选:D
    8. 已知函数在上有且只有一个最大值点(即取得最大值对应的自变量),则的取值范围是( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据正弦函数最值性质列式求解即可.
    【详解】由,得,由题意可得,解得,
    即的取值范围是.
    故选:B
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 已知角的终边经过点,则下列结论正确的是( )
    A. 若,则
    B. 若,则
    C. 若,则
    D. 若,则
    【答案】ABD
    【解析】
    【分析】利用三角函数定义逐项求解判断.
    【详解】由,得,解得(负值舍去),则正确.
    由,得,则B,D正确.
    由,得,解得,则错误.
    故选:ABD
    10. 已知是定义在上的函数,,且,则( )
    A.
    B. 偶函数
    C. 的最小值是1
    D. 不等式的解集是
    【答案】BCD
    【解析】
    【分析】赋值法判断ABC,利用单调性解不等式判断D.
    【详解】对于A,令,得,解得或2.
    因为,所以,则A错误.
    对于BC,令,得,则,
    从而是偶函数,且,故B,C正确.
    对于D,因为是偶函数,在上单调递增,且,
    所以不等式等价于,
    所以,解得,则正确.
    故选:BCD.
    11. 某班语文老师对该班甲、乙、丙、丁4名同学连续7周每周阅读的天数(每周阅读天数可以是)进行统计,根据统计所得数据对这4名同学这7周每周的阅读天数分别做了如下描述:
    甲:中位数为3,众数为5;
    乙:中位数为4,极差为3;
    丙:中位数为4,平均数为3;
    丁:平均数为3,方差为3.
    那么可以判断一周阅读天数一定没有出现7天的是( )
    A. 甲B. 乙C. 丙D. 丁
    【答案】ACD
    【解析】
    【分析】利用中位数,众数,平均数,极差的意义结合举反例判断ABC,计算方差并且讨论求解.
    【详解】对于A,因为中位数为3,众数为5,所以这7个数从小到大排列后,第4个数是3,所
    以中一定有一个数出现2次,5出现3次,所以这7个数中一定没有出现7,则正确.
    对于B,因为中位数为4,极差为3,所以这7个数可以是,则B错误.
    对于C,若出现1个7,则这7个数从小到大排列后,后4个数之和最小为19,前3个数之和最小为3,
    从而这7个数的平均数最小为,即这7个数的平均数不可能为3,故C正确.
    对于,设这7个数分别为,则,
    .
    若7,则
    ,
    从而这6个数可能是或或
    或或或或或
    或或,这与矛盾,
    即这7个数中一定没有出现7,故D正确.
    故选:ACD
    【点睛】关键点睛,本题考查数据的数字特征,关键是对D选项列举所有可能值推出矛盾.
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 甲、乙两人下象棋,已知甲获胜的概率是,平局的概率是,则乙获胜的概率是__________.
    【答案】##0.25
    【解析】
    【分析】利用对立事件概率求解.
    【详解】设事件表示“乙获胜”,则,
    则.
    故答案为:.
    13. 一扇环形砖雕如图所示,该扇环形砖雕可视为扇形截去同心扇形所得的部分,已知分米,弧长为分米,弧长为分米,则______分米,此扇环形砖雕的面积为______平方分米.
    【答案】 ①. 6 ②.
    【解析】
    【分析】根据弧长公式计算得,然后利用扇形面积公式求解砖雕面积即可.
    【详解】设圆心角,则,解得分米,所以分米,
    则此扇环形砖雕的面积为平方分米.
    故答案为:6,
    14. 已知是上的单调函数,则的取值范围是__________.
    【答案】
    【解析】
    【分析】函数分单调递增和单调递减两种情况结合分段函数单调性列不等式求解.
    【详解】若在上单调递增,则解得.
    若在上单调递减,则解得.
    故的取值范围是.
    故答案为:
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 某环保小组共有5名成员,其中男成员有2人,现从这5人中随机选出3人去某社区进行环保宣传.
    (1)求所选的3人中恰有1名男成员的概率;
    (2)求所选的3人中至少有2名女成员的概率.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)(2)利用古典概型公式求解.
    【小问1详解】
    由题意可知该环保小组女成员有3人,记为;男成员有2人,记为.
    从5名成员随机选出3人的情况有,共10种.
    所选的3人中恰有1名男成员的情况有,共6种,
    则所选的3人中恰有1名男成员的概率.
    【小问2详解】
    所选的3人中至少有2名女成员的情况有,共7种,
    则所选的3人中至少有2名女成员的概率.
    16. 已知函数.
    (1)求的单调递增区间;
    (2)求在上的值域.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)利用正弦函数单调性列不等式求单调增区间;
    (2)整体换元法求值域.
    小问1详解】
    令,
    解得,
    则的单调递增区间为.
    【小问2详解】
    因为,所以.
    当,即时,
    取得最小值;
    当,即时,
    取得最大值.
    故在上的值域为.
    17. 某校为了解该校高三年级学生的物理成绩,从某次高三年级物理测试中随机抽取名男生和名女生的测试试卷,记录其物理成绩(单位:分),得到如下数据:
    名男生的物理成绩分别为、、、、、、、、、、、;
    名女生的物理成绩分别为、、、、、、、.
    (1)求这名男生物理成绩的平均分与方差;
    (2)经计算得这名女生物理成绩的平均分,方差,求这名学生物理成绩的平均分与方差.
    附:分层随机抽样的方差公式:,表示第层所占的比例.
    【答案】(1),
    (2),
    【解析】
    【分析】(1)利用平均数和方差公式可求得、的值;
    (2)利用分层抽样的平均数和方差公式可求得和的值.
    【小问1详解】
    解:这名男生物理成绩的平均分为,
    方差为.
    【小问2详解】
    解:这名学生物理成绩的平均分为,
    方差为
    18. 已知定义在上的奇函数.
    (1)求的值;
    (2)证明:在上单调递增;
    (3)若对任意的,都有,求的最大值.
    【答案】(1)
    (2)证明见解析 (3)4
    【解析】
    【分析】(1)利用奇函数定义赋值得的方程组求解即可;
    (2)利用函数单调性定义证明;
    (3)利用函数奇偶性和单调性解不等式,转化为二次函数在上恒成立求解.
    【小问1详解】
    题意可得,解得.
    因为,所以,解得.
    经验证,符合题意.
    【小问2详解】
    证明:由(1)可知.
    任取,则.
    因为,所以,则,即.
    故在上单调递增.
    【小问3详解】
    不等式等价于.
    因为为奇函数,所以.
    因为在上单调递增,所以,即.
    因为,所以,
    解得,即的最大值为4.
    19. 已知函数.
    (1)求的解析式;
    (2)求不等式的解集;
    (3)若存在,使得,求的取值范围.
    【答案】(1)
    (2)
    (3)
    【解析】
    【分析】(1)利用换元法可求得函数的解析式;
    (2)利用二次不等式解法可得出不等式的解集;
    (3)由已知可得出,令,,可得出,对实数的取值进行分类讨论,求出函数在上的最大值,根据可求得实数的取值范围.
    【小问1详解】
    解:设,则.
    因为,所以,
    则.
    【小问2详解】
    解:不等式,即,即,
    则,解得,即不等式的解集为.
    【小问3详解】
    解:因为,所以,
    则不等式等价于不等式.
    设,则函数,
    故二次函数图象的对称轴方程为.
    当时,即时,在上单调递增,
    则,解得,故符合题意;
    当,即时,在上单调递减,在上单调递增,
    则,解得或,
    故或符合题意;
    当时,即时,在上单调递减,
    则,解得,故符合题意.
    综上,的取值范围是.
    【点睛】方法点睛:“动轴定区间”型二次函数最值的方法:
    (1)根据对称轴与区间的位置关系进行分类讨论;
    (2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;
    (3)将分类讨论的结果整合得到最终结果.
    相关试卷

    广西部分学校2023-2024学年高一下学期开学考试数学试卷(Word版含解析): 这是一份广西部分学校2023-2024学年高一下学期开学考试数学试卷(Word版含解析),共17页。试卷主要包含了本试卷主要考试内容, 已知,则, 已知,,且,则的最小值是等内容,欢迎下载使用。

    广西部分学校2024届高三下学期开学考试数学试卷(含答案): 这是一份广西部分学校2024届高三下学期开学考试数学试卷(含答案),共17页。试卷主要包含了选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    2024保定部分高中高一下学期开学考试数学含解析: 这是一份2024保定部分高中高一下学期开学考试数学含解析,文件包含河北省保定市部分高中2023-2024学年高一下学期开学数学试题docx、河北省保定市部分高中2023-2024学年高一下学期开学数学答案docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024广西部分学校高一下学期开学考试数学含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map