四川省宜宾市叙州区第二中学2023届高三二诊模拟理科数学试题(Word版附解析)
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.本试卷满分150分,考试时间120分钟. 考试结束后,请将答题卡交回.
一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,则( )
A. B. C. D.
2. 复数满足,则
A. B. C. D.
3. 采购经理指数(PMI),是通过对企业采购经理月度调查结果统计汇总、编制而成的指数,它涵盖了企业采购、生产、流通等各个环节,包括制造业和非制造业领域,是国际上通用的检测宏观经济走势的先行指数之一,具有较强的预测、预警作用.制造业PMI高于时,反映制造业较上月扩张;低于,则反映制造业较上月收缩.下图为我国2021年1月—2022年6月制造业采购经理指数(PMI)统计图.
根据统计图分析,下列结论最恰当的一项为( )
A. 2021年第二、三季度的各月制造业在逐月收缩
B. 2021年第四季度各月制造业在逐月扩张
C. 2022年1月至4月制造业逐月收缩
D. 2022年6月PMI重回临界点以上,制造业景气水平呈恢复性扩张
4. “”是“”( )
A. 充分不必要条件B. 必要不充分条件
C. 充分必要条件D. 既不充分也不必要条件
5. 人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度(单位:)满足d(x)=9lg.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的( )
A 1倍B. 10倍
C 100倍D. 1 000倍
6. 设为等差数列,公差,为其前项和,若,则( )
A. B. C. D.
7. 若抛物线的的准线与抛物线相切,则( )
A. -8B. 8C. -4D. 4
8. 已知,,则( )
A. B. C. D.
9. 下列命题中,真命题的是( )
A. 若回归方程,则变量y与x正相关
B. 线性回归分析中相关指数用来刻画回归的效果,若值越小,则模型的拟合效果越好
C. 若样本数据,,…,的方差为2,则数据,,…,的方差为8
D. 若随机变量X服从正态分布,,则
10. 已知函数,则下列结论不正确的是( )
A. 为函数的一个周期
B. 是函数图象的一个对称中心
C. 函数在区间上单调递增,则实数的最大值为
D. 将函数的图象向右平移个单位长度后,得到一个偶函数的图象
11. 已知函数的定义域为R,为偶函数,,当时,(且),且.则( )
A. 28B. 32C. 36D. 40
12. 如图, 在棱长为 2 的正方体 中,均为所在棱的中点, 则下列结论正确的有( )
①棱 上一定存在点, 使得
②三棱锥的外接球的表面积为
③过点 作正方体的截面, 则截面面积为
④设点 在平面内, 且平面, 则与所成角余弦值的最大值为
A. 1 个B. 2 个C. 3 个D. 4 个
二、填空题:本大题共4个小题,每小题5分,共20分.
13. 的展开式中项的系数为___________.
14. 从集合中随机取两个不同的数,则满足的概率为__________.
15. 双曲线 的左顶点为, 右焦点, 若直线与该双曲线交于两点,为等腰直角三角形, 则该双曲线离心率为__________
16. 各项均为正数的等比数列的首项为,其前项和为,且.若数列满足,则______.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须答.第22、23题为选考题,考生根据要求作答.
(一)必做题:共60分.
17. 在中,角的对边分别为,,,已知.
(1)求;
(2)若,点在边上且,,求.
18. 某楼盘举行购房抽奖送装修基金活动,规则如下:对购买该楼盘的业主,从装有2个红球、2个白球的A盒和装有3个红球、2个白球的B盒中,各随机抽出2球,在摸出的四个球中,若四个球都为红球,则为一等奖,奖励10000元的装修基金,若恰有三个红球,则为二等奖,奖励5000元的装修基金,若恰有二个红球,则为三等奖,奖励3000元的装修基金,其它视为鼓励奖,奖励1500元的装修基金.
(1)三名业主参与抽奖,求恰有一名业主获得二等奖的概率;
(2)记某业主参加抽奖获得的装修基金为X,求X的分布列和数学期望.
19. 如图1,在等边中,点D,E分别为边AB,AC上的动点且满足,记.将△ADE沿DE翻折到△MDE的位置并使得平面MDE⊥平面DECB,连接MB,MC得到图2,点N为MC的中点.
(1)当EN∥平面MBD时,求λ的值;
(2)试探究:随着λ值的变化,二面角BMDE的大小是否改变?如果改变,请说明理由;如果不改变,请求出二面角的正弦值大小.
20. 已知,动点在:上运动.线段的中垂线与交于.
(1)求点的轨迹的方程;
(2)设、、三点均在曲线上,且,(为原点),求的范围.
21. 已知函数
(1)当时,求函数的单调区间;
(2)若,函数的最小值为,求的值域.
(二)选做题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.
选修4-4:坐标系与参数方程
22. 在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)当时,是什么曲线?
(2)当时,求与的公共点的直角坐标.
选修4-5:不等式选讲
23. 已知函数,.
(1)解不等式;
(2)若方程在区间有解,求实数的取值范围.
四川省宜宾市叙州区第一中学2023届高三二诊模拟文科数学试题(Word版附解析): 这是一份四川省宜宾市叙州区第一中学2023届高三二诊模拟文科数学试题(Word版附解析),文件包含四川省宜宾市叙州区第一中学2023届高三二诊模拟文科数学试题原卷版docx、四川省宜宾市叙州区第一中学2023届高三二诊模拟文科数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
四川省宜宾市叙州区第一中学2024届高三上学期一诊模拟数学试题(文)试题(Word版附解析): 这是一份四川省宜宾市叙州区第一中学2024届高三上学期一诊模拟数学试题(文)试题(Word版附解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省宜宾市叙州区第二中学2023届高三数学(理)三诊模拟试题(Word版附解析): 这是一份四川省宜宾市叙州区第二中学2023届高三数学(理)三诊模拟试题(Word版附解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。