湖南省娄底市中考数学历年高频真题专项攻克 B卷(精选)
展开
这是一份湖南省娄底市中考数学历年高频真题专项攻克 B卷(精选),共29页。试卷主要包含了下列方程变形不正确的是,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知反比例函数经过平移后可以得到函数,关于新函数,下列结论正确的是( )
A.当时,y随x的增大而增大B.该函数的图象与y轴有交点
C.该函数图象与x轴的交点为(1,0)D.当时,y的取值范围是
2、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
A.B.C.D.
3、如图是一个运算程序,若x的值为,则运算结果为( )
A.B.C.2D.4
4、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A.B.C.D.
5、在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( ).
A.28B.54C.65D.75
6、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.abB.a+bC.abD.a
7、下列方程变形不正确的是( )
A.变形得:
B.方程变形得:
C.变形得:
D.变形得:
8、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
9、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
A.30km/hB.60km/hC.70km/hD.90km/h
10、单项式的次数是( )
A.1B.2C.3D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.
2、《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2 m记作,则下降3m记作______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知,,,,则_______.
4、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.
5、如图, 已知在 Rt 中, , 将 绕点 逆时针旋转 后得 , 点 落在点 处, 点 落在点 处, 联结 , 作 的平分线 , 交线段 于点 , 交线 段 于点 , 那么 的值为____________.
三、解答题(5小题,每小题10分,共计50分)
1、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.
(1)随机摸取一个小球的标号是奇数,该事件的概率为_______;
(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出的小球标号相同的概率.
2、如图,三角形中,点D在上,点E在上,点F,G在上,连接.己知,,求证:.
将证明过程补充完整,并在括号内填写推理依据.
证明:∵_____________(已知)
∴(_______________________)
∴.________(____________________)
∵(已知)
∴________(等量代换)
∴(___________________)
3、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
(1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
①直线;②双曲线;③抛物线.
(2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
(3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
(2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
(3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
5、已知二元一次方程,通过列举将方程的解写成下列表格的形式,
如果将二元一次方程的解所包含的未知数x的值对应直角坐标系中一个点的横坐标,未知数y的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:解的对应点是.
(1)①表格中的______,______;
②根据以上确定対应点坐标的方法,在所给的直角坐标系中画出表格中给出的三个解的对应点;
(2)若点,恰好都落在的解对应的点组成的图象上,求a,b的值.
-参考答案-
一、单选题
1、C
【分析】
函数的图象是由函数的图象向下平移1个单位长度后得到的,根据两个函数的图像,可排除A,B,C选项,将y=0代入函数可得到函数与x轴交点坐标为(1,0),故C选项正确.
【详解】
解:函数与函数的图象如下图所示:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
函数的图象是由函数的图象向下平移1个单位长度后得到的,
A、由图象可知函数,当时,y随x的增大而减小,选项说法错误,与题意不符;
B、函数的图象是由函数的图象向下平移一个单位后得到的,所以函数与y轴无交点,选项说法错误,与题意不符;
C、将y=0代入函数中得,,解得,故函数与x轴交点坐标为(1,0),选项说法正确,与题意相符;
D、当时, ,有图像可知当时,y的取值范围是,故选项说法错误,与题意不符;
故选:C.
【点睛】
本题考查反比例函数的图象,以及函数图象的平移,函数与数轴的交点求法,能够画出图象,并掌握数形结合的方法是解决本题的关键.
2、A
【分析】
根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
【详解】
解:B是俯视图,C是左视图,D是主视图,
故四个平面图形中A不是这个几何体的三视图.
故选:A.
【点睛】
本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
3、A
【分析】
根据运算程序,根据绝对值的性质计算即可得答案.
【详解】
∵<3,
∴=,
故选:A.
【点睛】
本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
4、B
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
5、B
【分析】
一竖列上相邻的三个数的关系是:上面的数总是比下面的数小7.可设中间的数是x,则上面的数是x-7,下面的数是x+7.则这三个数的和是3x,让选项等于3x列方程.解方程即可
【详解】
设中间的数是x,则上面的数是x-7,下面的数是x+7,
则这三个数的和是(x-7)+x+(x+7)=3x,
∴3x=28,
解得:不是整数,
故选项A不是;
∴3x=54,
解得: ,
中间的数是18,则上面的数是11,下面的数是28,
故选项B是;
∴3x=65,
解得: 不是整数,
故选项C不是;
∴3x=75,
解得:,
中间的数是25,则上面的数是18,下面的数是32,
日历中没有32,
故选项D不是;
所以这三个数的和可能为54,
故选B.
【点睛】
本题考查了一元一次方程的应用,解决的关键是观察图形找出数之间的关系,从而找到三个数的和的特点.
6、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
7、D
【分析】
根据等式的性质解答.
【详解】
解:A. 变形得:,故该项不符合题意;
B. 方程变形得:,故该项不符合题意;
C. 变形得:,故该项不符合题意;
D. 变形得:,故该项符合题意;
故选:D.
【点睛】
此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.
8、A
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
9、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
10、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
二、填空题
1、19.2
【解析】
【分析】
点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.
【详解】
解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
由图可得:,
当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
∴,,
∵等腰面积为48,,
∴,
,
∴,
故答案为:.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
2、
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:如果水位上升记为“+”,那么水位下降应记为“﹣”,所以水位下降3米记为﹣3m.
故答案为:.
【点睛】
此题考查的知识点是正数和负数,关键是在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
3、46
【解析】
【分析】
利用勾股定理分别求出AB2,AC2,继而再用勾股定理解题.
【详解】
解:由图可知,AB2=
故答案为:46.
【点睛】
本题考查正方形的性质、勾股定理等知识,是基础考点,掌握相关知识是解题关键.
4、##0.25
【解析】
【分析】
由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.
【详解】
解:从4位同学中选取1位共有4种等可能结果,
其中选中甲同学的只有1种结果,
∴恰好选中乙同学的概率为,
故答案为:.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5、
【解析】
【分析】
根据题意以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,由可设,,,由旋转可得,,,则,,写出点坐标,由角平分线的性质得,即可得出,即可得,故可推出,求出点P坐标,由得,推出,故得,由相似三角形的性质即可得解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
如图,以C为原点建立平面直角坐标系,过点N作延长交BP于点P,交于点H,轴交于点G,过点D作轴交于点Q,
∵,
∴设,,,
由旋转可得:,,,
∴,,
∴,,,
∵AN是平分线,
∴,
∴,即可得,
∴,
设直线BE的解析式为,
把,代入得:,
解得:,
∴,
当时,,
解得:,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查旋转的性质、正切值、角平分线的性质以、用待定系数法求一次函数及相似三角形的判定与性质,根据题意建立出适当的坐标找线段长度是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
三、解答题
1、
(1)
(2)(两次取出的小球标号相同)
【分析】
(1)直接由概率公式求解即可;
(2)画树状图,共有9种等可能的结果,两次取出小球标号相同的结果有3种,再由概率公式求解即可.
(1)
∵在1,2,3三个数中,其中奇数有1,3共2个数,
∴随机摸取一个小球的标号是奇数,该事件的概率为
故答案为:;
(2)
画树状图如下:
由树状图可知,随机摸取一个小球后放回,再随机摸取一个小球,共有9种等可能的结果,其中两次取出的小球标号相同的结果共有3种,
∴(两次取出的小球标号相同).
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
2、,同旁内角互补,两直线平行,,两直线平行,内错角相等,,同位角相等,两直线平行
【分析】
先由,证明,可得,结合已知条件证明,再证明即可.
【详解】
解:证明:∵(已知)
∴(同旁内角互补,两直线平行)
∴.(两直线平行,内错角相等)
∵(已知)
∴(等量代换)
∴(同位角相等,两直线平行)
【点睛】
本题考查的是平行线的判定与性质,掌握“平行线的判定方法”是解本题的关键.
3、
(1)①
(2)的取值范围是
(3)或
【分析】
(1)根据图形M与图形N是双联图形的定义可直接判断即可;
(2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)根据双联图形的宝座进行判断即可.
(1)
选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
又的半径为2,
∴这两个图形有且只有两个公共点,
∴这两个图形是“双联图形”;
选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
故这两个图形不是“双联图形”;
选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
故这两个图形不是“双联图形”;
∴选①
故答案为①;
(2)
已知直线与抛物线有且只有两个公共点,
∴将代入抛物线中,得,
配方得,
∵方程有实数解,
∴即
又直线不是双曲线的“双联图形”,
∴直线与双曲线最多有一个公共点,
即当时,代入得,,即,
∴实数的取值范围是;
(3)
∵是二次函数,
∴
∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
∴当时,二次函数的图象与的图象没有交点,
∴不成立;
当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
把C(1,4),B(4,0)代入,得
,
∴,
∴y=-x+4,
∵抛物线与BC不想交,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,即ax2+(2a+1)x+a-1=0无实数根,
∴(2a+1)2-4a(a-1)
相关试卷
这是一份贵州省中考数学历年高频真题专项攻克 B卷(精选),共26页。试卷主要包含了已知,则的补角等于等内容,欢迎下载使用。
这是一份湖南省怀化市中考数学历年高频真题专项攻克 B卷(含答案详解),共30页。试卷主要包含了下列图形是全等图形的是,如图,下列条件中不能判定的是,一元二次方程的根为等内容,欢迎下载使用。
这是一份湖南省益阳市中考数学历年高频真题专项攻克 B卷(含答案及详解),共21页。试卷主要包含了有理数 m,下列方程中,解为的方程是,下列等式变形中,不正确的是等内容,欢迎下载使用。