终身会员
搜索
    上传资料 赚现金

    专题16.17 二次根式(全章知识梳理与考点分类讲解)-2023-2024学年八年级数学下学期基础知识专题训练(人教版)

    立即下载
    加入资料篮
    专题16.17 二次根式(全章知识梳理与考点分类讲解)-2023-2024学年八年级数学下学期基础知识专题训练(人教版)第1页
    专题16.17 二次根式(全章知识梳理与考点分类讲解)-2023-2024学年八年级数学下学期基础知识专题训练(人教版)第2页
    专题16.17 二次根式(全章知识梳理与考点分类讲解)-2023-2024学年八年级数学下学期基础知识专题训练(人教版)第3页
    还剩13页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级下册16.1 二次根式优秀当堂检测题

    展开

    这是一份人教版八年级下册16.1 二次根式优秀当堂检测题,共16页。


    【知识点一】二次根式的相关概念和性质
    1. 二次根式
    形如的式子叫做二次根式,如等式子,都叫做二次根式.
    特别提醒:二次根式有意义的条件是,即只有被开方数时,式子才是二次根式,才有意义.
    2.二次根式的性质
    (1);
    (2);
    (3).
    特别提醒:(1) 一个非负数可以写成它的算术平方根的平方的形式,即(),如().
    (2) 中的取值范围可以是任意实数,即不论取何值,一定有意义.
    (3)化简时,先将它化成,再根据绝对值的意义来进行化简.
    (4)与的异同
    不同点:中可以取任何实数,而中的必须取非负数;
    =,=().
    相同点:被开方数都是非负数,当取非负数时,=.
    3. 最简二次根式
    (1)被开方数是整数或整式;
    (2)被开方数中不含能开方的因数或因式.
    满足上述两个条件的二次根式,叫做最简二次根式.如等都是最简二次根式.
    特别提醒:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.
    4.同类二次根式
    几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式.
    特别提醒:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如与,由于=,与显然是同类二次根式.
    【知识点二】二次根式的运算
    1. 乘除法
    (1)乘除法法则:
    特别提醒:
    (1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如.
    (2)被开方数a、b一定是非负数(在分母上时只能为正数).如.
    2.加减法
    将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.
    特别提醒:
    二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如.
    【考点目录】
    【考点1】二次根式及相关概念; 【考点2】二次根式的性质;
    【考点3】二次根式的大小比较; 【考点4】二次根式运算与求值;
    【考点5】二次根式的应用.
    【考点一】二次根式及相关概念;
    (1)二次根式有意义的条件
    【例1】(2023上·山东济南·八年级统考阶段练习)(1)若有意义,则满足条件____.
    (2)若,求的值.
    【答案】(1)(2)6
    【分析】(1)根据二次根式有意义的条件列式求解即可;
    (2)根据二次根式有意义的条件可得,解得,进而确定的值,然后代入求值即可.
    解:(1)若有意义,
    则有,
    ∴.
    故答案为:;
    (2)∵,,
    ∴,解得,
    ∴可有,解得,
    ∴.
    【点拨】本题主要考查了二次根式有意义的条件、代数式求值等知识,理解并掌握二次根式有意义的条件是解题关键.
    【变式1】(2024上·河南周口·九年级校联考期末)若有意义,则x、y的取值范围不可能是( )
    A.B.C.D.
    【答案】C
    【分析】本题考查了二次根式有意义的条件,由题意知,异号或其中至少一个为0,由此即可作出判断.
    解:由题意知,,
    则,
    即异号或其中至少一个为0,故是不可能的;
    故选:C.
    【变式2】(2023·广东潮州·统考三模)函数中,自变量x的取值范围是 .
    【答案】
    【分析】本题考查了二次根式有意义的条件,分式有意义的条件,根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.
    解:由题意得,,
    解得.
    故答案为:.
    (2)最简二次根式与同类二次根式
    【例2】(2023下·江苏扬州·八年级统考期末)已知二次根式.
    (1)求使得该二次根式有意义的的取值范围;
    (2)已知是最简二次根式,且与可以合并,
    求的值;
    求与的乘积.
    【答案】(1);(2);.
    【分析】(1)根据二次根式有意义的条件是被开方数大于等于进行求解即可;
    (2)根据最简根式和同类二次根式的定义可得,解方程即可得到答案;
    根据所求利用二次根式的乘法计算法则求解即可.
    解:(1)∵二次根式有意义,
    ∴,
    解得:,
    (2),
    ∵与可以合并,
    ∴,
    解得:;
    由得:,


    【点拨】本题主要考查了二次根式有意义的条件,最简二次根式和同类二次根式的定义,二次根式的乘法等等,熟知二次根式的相关知识是解题的关键.
    【变式1】(2023下·广东东莞·八年级校联考期中)下列二次根式是最简二次根式的是( )
    A.B.C.D.
    【答案】A
    【分析】根据最简二次根式的概念逐项一一判断即可.
    解:、是最简二次根式,符合题意;
    、,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;
    、,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;
    、,被开方数中含分母,不是最简二次根式,不符合题意;
    故选:.
    【点拨】此题考查了最简二次根式的概念,解题的关键是熟记被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.
    【变式2】(2023上·福建泉州·八年级泉州七中校考阶段练习)已知与最简二次根式是同类二次根式,则 .
    【答案】
    【分析】本题考查了同类二次根式,熟记“二次根式化为最简二次根式后被开方数相同的二次根式为同类二次根式”是解题关键.
    解:与最简二次根式是同类二次根式,

    解得:.
    故答案为:.
    【考点二】二次根式的性质
    【例3】(2023上·江西南昌·八年级校联考期中)课本再现
    得出结论(1)________,________,由以上两个例题可以得出结论:________.
    知识应用
    (2)已知实数,,所对应的点在数轴上的位置如图所示.

    请化简:.
    【答案】(1)5,5,;(2)
    【分析】本题考查数轴,二次根式的化简,化简绝对值,掌握是解题的关键.
    (1)根据二次根式的性质求解;
    (2)根据数轴确定a,c和的正负,进而利用化简.
    解:(1),,可以得出结论:,
    故答案为:5,5,;
    (2)由数轴可知,,,


    【变式1】(2023上·河南洛阳·九年级统考期中)化简二次根式,得( )
    A.B.C.D.
    【答案】C
    【分析】本题考查的是二次根式的性质与化简,先根据,再由二次根式的性质即可得出结论,熟知二次根式具有非负性是解题的关键.
    解:,
    故选:.
    【变式2】(2021·北京·九年级专题练习)化简的结果为 .
    【答案】
    【分析】先把化为平方的形式,再根据化简即可求解.
    解:原式

    故答案为:.
    【点拨】本题考查了双重二次根式的化简,把化为平方的形式是解题关键.
    【考点三】二次根式的大小比较
    【例4】(2023下·湖北武汉·七年级武汉市粮道街中学校联考期中)“比差法”是数学中常用的比较两个数大小的方法,
    即:;
    例如:比较与2的大小.
    ∵ 又∵ 则
    ∴,∴.
    请根据上述方法解答以下问题:
    (1)的整数部分是________,的小数部分是_______;
    (2)比较与的大小.
    (3)已知,试用“比差法”比较与的大小.
    【答案】(1)5;;(2);(3).
    【分析】(1)首先估算出,得到的整数部分是5;推出,得到,据此即可求解;
    (2)根据“比差法”比较两个数大小即可;
    (3)根据“比差法”比较得再得到,根据,化简比较即可求解.
    (1)解:∵,
    ∴的整数部分是5;
    ∴,
    ∴,
    ∴的整数部分是1,则的小数部分是,
    故答案为:5;;
    (2)解:,
    ∴;
    (3)解:
    ∵,
    ∴,
    ∴.
    【点拨】此题考查了无理数大小的比较,弄清题中的“作差比较法”是解本题的关键.
    【变式1】(2023下·河北石家庄·八年级统考阶段练习)的结果应在( )
    A.和0之间B.0和1之间
    C.1和2之间D.2和3之间
    【答案】B
    【分析】根据二次根式的混合运算计算,并估算结果的值即可.
    解:原式=


    故选B.
    【点拨】本题主要考查二次根式的运算以及估算,熟练掌握二次根式的运算并能够估算根式的取值范围是解决本题的关键.
    【变式2】(2023上·宁夏银川·八年级银川唐徕回民中学校考期中)比较下列各数大小:
    ① ;② ;③
    【答案】
    【分析】本题主要考查了实数的比较大小、比较二次根式的大小,熟练掌握比较方法是解此题的关键.
    (1)首先比较与的大小,根据负数绝对值大的反而小,即可得解;
    (2)通过比较与1的大小即可求解;
    (3),,比较被开方数的大小即可;
    解:①,

    故答案为: ;
    ②;

    故答案为: ;
    ③,,且;

    故答案为: ;
    【考点四】二次根式运算与求值
    【例5】(2024上·河北保定·八年级统考期末)计算:
    (1);(2).
    【答案】(1);(2)1
    【分析】本题主要考查二次根式性质,二次根式的混合运算,乘法公式的运用的综合,掌握以上知识是解题的关键.
    (1)先化简各二次根式,再合并即可;
    (2)先进行二次根式的乘法运算,再合并即可.
    (1)解:原式

    (2)原式

    【变式1】(2023上·辽宁铁岭·八年级统考期末)下列计算正确的是( ).
    A.B.
    C.D.
    【答案】D
    【分析】本题考查了二次根式的混合运算及分母有理化;根据二次根式加减乘除运算进行即可判断.
    解:A、,故选项A计算错误;
    B、,故选项B计算错误;
    C、,故选项C计算错误;
    D、,故选项D计算正确;
    故选:D.
    【变式2】(2023上·湖南长沙·八年级校联考期末)把进行化简,得到的最简结果是 .(结果保留根号)
    【答案】
    【分析】本题考查二次根式的混合运算,根据二次根式的混合运算法则计算即可.
    解:

    故答案为:.
    【例6】(2024上·广东揭阳·八年级统考期末)在数学小组探究学习中,小华与他的小组成员遇到这样一道题:
    已知,求的值.他们是这样解答的:


    请你根据小华小组的解题方法和过程,解决以下问题:
    (1)___________.
    (2)化简.
    (3)若,求的值.
    【答案】(1);(2);(3)8
    【分析】本题主要考查了分母有理化,二次根式的化简求值:
    (1)直接分子分母同时乘以进行分母有理化即可;
    (2)先求出,据此把所求式子裂项计算即可;
    (3)先求出∴,进而得到,则,再把所求式子变形为,进而得到,据此可得答案.
    (1)解:,
    故答案为:;
    (2)解:∵


    (3)解:∵,
    ∴,
    ∴,
    ∴,



    【变式1】(2024下·全国·八年级假期作业)若,则代数式的值是( )
    A.B.C.D.2
    【答案】B
    【解析】略
    【变式2】(2024上·四川成都·八年级四川省成都市石室联合中学校考期末)如果,则 .
    【答案】
    【分析】本题主要考查了二次根式的化简求值,利用完全平方公式把所求式子变形为,再代值计算即可.
    解:∵,


    故答案为:.
    【考点五】二次根式的应用
    【例7】(2023上·广东深圳·八年级统考期末)秦九韶(1208年-1268年),字道古,南宋著名数学家.与李冶、杨辉、朱世杰并称宋元数学四大家.他精研星象、音律、算术、诗词、弓剑、营造之学.他于1247年完成的著作《数学九章》中关于三角形的面积公式与古希腊几何学家海伦的成果并称“海伦一秦九韶公式”.它的主要内容是,如果一个三角形的三边长分别是,记为三角形的面积,那么.
    (1)在中,,请用上面的公式计算的面积;
    (2)如图,在中,,垂足为,求的长;
    (3)一个三角形的三边长分别为,求的值.
    【答案】(1);(2);(3)
    【分析】本题考查二次根式的应用,解答本题的关键是明确题意,熟悉掌握海伦-秦九韶公式求三角形的面积.
    (1)根据题目的指示,了解海伦-秦九昭公式,根据具体的数字先计算p的值,然后再代入公式,计算三角形的面积即可;
    (2)由海伦-秦九韶公式求得的面积.再根据,即可求;
    (3)根据得以得到,再根据面积可以得到,代入计算即可.
    (1)解:∵,
    ∴,
    ∴的面积为,
    (2)解:
    ∴,
    ∴的面积为,
    又∵,
    ∴;
    (3)解:∵,
    ∴,即,
    又∵
    ∴,
    即,
    ∴.
    【变式1】(2023上·河南新乡·九年级统考期中)在长方形中无重叠地放入面积分别为和的两张正方形纸片,则图中空白部分的面积为( )
    A.B.
    C.D.
    【答案】A
    【分析】本题主要考查二次根式的应用,算术平方根的实际应用,根据正方形的面积求出两个正方形的边长即可得出结果.
    解:∵两张正方形纸片面积分别为和,
    ∴它们的边长分别为,,
    ∴,,
    ∴空白部分的面积
    故选:A.
    【变式2】(2023上·江苏常州·八年级校考期中)如图,长方形内有两个相邻的正方形,其面积分别为9和25,则图中阴影部分面积为 .
    【答案】6
    【分析】本题主要考查了二次根式的应用,利用面积公式先算出两个正方形的面积,再利用“阴影面积长方形的面积两个正方形的面积”得结论.利用二次根式的性质计算出两个正方形的边长是解决本题的关键.
    解:图中两个正方形的面积分别为9和25,
    图中两个正方形的边长分别为:和.
    图中长方形的长为,宽为5.
    图中阴影部分面积为:.
    故答案为:6.
    类型
    法则
    逆用法则
    二次根式的乘法
    积的算术平方根化简公式:
    二次根式的除法
    商的算术平方根化简公式:
    思考:对于任意数,一定等于吗?
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题16.17 二次根式(全章知识梳理与考点分类讲解)-2023-2024学年八年级数学下学期基础知识专题训练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map