所属成套资源:44个高考必考微专题-2024年高考数学二轮微专题系列
微专题29 函数的图象与性质-2024年高考数学二轮微专题系列
展开
这是一份微专题29 函数的图象与性质-2024年高考数学二轮微专题系列,共22页。试卷主要包含了5)=2,g=f,已知函数f=eq \f,则等内容,欢迎下载使用。
高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性和单调性;2.利用函数的性质推断函数的图象;3.利用图象研究函数性质、方程及不等式的解集,综合性较强.
1.(2022·北京卷)已知函数f(x)=eq \f(1,1+2x),则对任意实数x,有( )
A.f(-x)+f(x)=0 B.f(-x)-f(x)=0
C.f(-x)+f(x)=1 D.f(-x)-f(x)=eq \f(1,3)
答案 C
解析 函数f(x)的定义域为R,f(-x)=eq \f(1,1+2-x)=eq \f(2x,1+2x),所以f(-x)+f(x)=eq \f(2x,1+2x)+eq \f(1,1+2x)=1,故选C.
2.(2022·全国甲卷)函数f(x)=(3x-3-x)·cs x在区间[-eq \f(π,2),eq \f(π,2)]的图象大致为( )
答案 A
解析 法一(特值法) 取x=1,则y=(3-eq \f(1,3))cs 1=eq \f(8,3)cs 1>0 ;
取x=-1,则y=(eq \f(1,3)-3)cs(-1)
=-eq \f(8,3)cs 1<0.
结合选项知选A.
法二 令y=f(x),
则f(-x)=(3-x-3x)cs(-x)=-(3x-3-x)cs x=-f(x),
所以函数y=(3x-3-x)cs x是奇函数,排除B,D;
取x=1,则y=(3-eq \f(1,3))cs 1=eq \f(8,3)cs 1>0,排除C.故选A.
3.(2022·新高考Ⅱ卷)已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则eq \(∑,\s\up6(22),\s\d4(k=1))f(k)=( )
A.-3 B.-2
C.0 D.1
答案 A
解析 因为f(1)=1,
所以在f(x+y)+f(x-y)=f(x)f(y)中,
令y=1,
得f(x+1)+f(x-1)=f(x)f(1),
所以f(x+1)+f(x-1)=f(x),①
所以f(x+2)+f(x)=f(x+1).②
由①②相加,得f(x+2)+f(x-1)=0,
故f(x+3)+f(x)=0,
所以f(x+3)=-f(x),
所以f(x+6)=-f(x+3)=f(x),
所以函数f(x)的一个周期为6.
在f(x+y)+f(x-y)=f(x)f(y)中,
令y=0,得f(x)+f(x)=f(x)f(0),
所以f(0)=2.
令x=y=1,得f(2)+f(0)=f(1)f(1),
所以f(2)=-1.
由f(x+3)=-f(x),
得f(3)=-f(0)=-2,f(4)=-f(1)=-1,
f(5)=-f(2)=1,f(6)=-f(3)=2,
所以f(1)+f(2)+…+f(6)=1-1-2-1+1+2=0,
根据函数的周期性知,eq \(∑,\s\up6(22),\s\d4(k=1))f(k)=f(1)+f(2)+f(3)+f(4)=1-1-2-1=-3,故选A.
4.(2021·新高考Ⅰ卷)函数f(x)=|2x-1|-2ln x的最小值为________.
答案 1
解析 函数f(x)=|2x-1|-2ln x的定义域为(0,+∞).
①当x>eq \f(1,2)时,f(x)=2x-1-2ln x,
所以f′(x)=2-eq \f(2,x)=eq \f(2(x-1),x).
当eq \f(1,2)0,即2x
相关试卷
这是一份微专题25 定值问题-2024年高考数学二轮微专题系列,共11页。
这是一份微专题20 直线与圆-2024年高考数学二轮微专题系列,共26页。试卷主要包含了点到直线y=k距离的最大值为,故选B,故选D,已知两条直线l1,已知M是圆C,已知直线l1等内容,欢迎下载使用。
这是一份微专题1 三角函数的图象与性质-2024年高考数学二轮微专题系列,共23页。试卷主要包含了5,0),等内容,欢迎下载使用。