所属成套资源:2024年高考数学复习二轮讲义(考前回顾+思想方法+六专题)
专题一 第5讲 母题突破3 零点问题--2024年高考数学复习二轮讲义
展开这是一份专题一 第5讲 母题突破3 零点问题--2024年高考数学复习二轮讲义,共4页。
思路分析
❶等价转换f(x)=0
❷判断g(x)=ex·sin x-x+1的零点
❸讨论g(x)在eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2)))上的零点个数
❹讨论g(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π))上的零点个数
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题1] (2023·安庆模拟)已知函数f(x)=eln x+bx2e1-x.若f(x)的导函数f′(x)恰有两个零点,求b的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子题2] 设函数f(x)=aln(x+1)+x2(a∈R),函数g(x)=ax-1.证明:当a≤2时,函数H(x)=f(x)-g(x)至多有一个零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
规律方法 (1)求解函数零点(方程根)个数问题的步骤
①将问题转化为函数的零点问题,进而转化为函数的图象与x轴(或直线y=k)在该区间上的交点问题.
②利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质.
③结合图象求解.
(2)已知零点求参数的取值范围
①结合图象与单调性,分析函数的极值点.
②依据零点确定极值的范围.
③对于参数选择恰当的分类标准进行讨论.
1.(2023·郑州模拟)已知函数f(x)=xln x+a-ax(a∈R).若函数f(x)在区间[1,e]上有且只有一个零点,求实数a的取值范围.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·商洛模拟)已知函数f(x)=(x-2)ex,其中e为自然对数的底数.函数g(x)=f(x)-ln x,证明:g(x)有且仅有两个零点.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
相关试卷
这是一份专题一 第5讲 母题突破3 零点问题2024年高考数学,共1页。试卷主要包含了已知函数f=x2+xln x.等内容,欢迎下载使用。
这是一份专题一 第5讲 母题突破2 恒成立问题与能成立问题2024年高考数学,共1页。
这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破3 定值问题(含解析),共8页。